About this Research Topic
The neural circuits and cell types supporting memory processes in the MTL areas have only recently been delineated using experimental approaches such as optogenetics, juxtacellular recordings and optical imaging. Principal (excitatory) cells are crucial for encoding, storing and retrieving memories at the cellular level, whereas inhibitory interneurons provide the temporal structures for orchestrating the activities of neuronal populations of principal cells by regulating synaptic integration and timing of action potential generation of principal cells as well as the generation and maintenance of network oscillations (rhythms). In addition, neuromodulators such as acetylcholine alter dynamical properties of neurons and synapses, and modulate oscillatory state and rules of synaptic plasticity and their levels might tune MTL to specific memory processes.
The goal of the research topic is to offer a snapshot of the current stateof-the-art on how memories are encoded, consolidated, stored and retrieved in MTL structures. Particularly welcome will be studies (experimental or computational) focusing on the structure and function of neural circuits, their cellular components (principal cell and inhibitory interneurons), synaptic plasticity rules involved in these memory processes, network oscillations such as theta and sharp-wave ripples,
and role of neuromodulators.
Possible questions are: (1) Which areas or pathways within the MTL support encoding/consolidation/retrieval? (2) What neural activity defines specific memory processes?
(3) What are the roles of neuromodulators in defining/switching these memory processes? (4) Could the role of synaptic plasticity be different in different memory processes? (5) What functional roles do the various inhibitory interneurons support during the encoding/consolidation/retrieval processes?
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.