About this Research Topic
This research topic aims to give a comprehensive understanding of the relationship between intrinsic microstructure and macroscopic properties. The emphasis is on microstructure that can be observed with the naked eye, a scanning electron microscope or micro-CT, and the physical mechanical properties like deformation modulus, permeability, and failure mode. There are three goals in this research topic. Firstly, the recent advances in a numerical and experimental method in the analysis of microstructure effects are collected. Second, a very powerful framework to understand the macroscopic behavior incorporating theoretical, numerical, and experimental analysis is provided. Third, the qualitative and quantitative analysis of the microstructure effect and the application in geotechnical engineering is discussed.
This research topic provides a platform for publishing original articles and reviews on recent numerical and experimental advances and applications on microscopic structure effect analysis of geomaterials. We welcome high-quality papers on theoretical developments, laboratory testing, field investigations, computational methods, and case studies. Potential topics include but are not limited to the following:
1. Experimental and site characterization including 3D printing, micro-CT scanning, heterogeneous and noncontinuous feature, in-situ testing & monitoring.
2. Microstructure description and generation methods like Mont-Carlo simulation and deep learning method.
3. Advanced numerical methods such as discrete element modeling, peridynamics, meshfree method, micromechanical continuum models, fluid-solid coupling
Keywords: Microscopic structure, Macroscopic property, Heterogeneity, Numerical simulation, Experimental study
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.