About this Research Topic
This has reduced the interpretability of ML models, which is one of the major obstacles to ML-based pathology identification and generalized single- or multi-modal and multi-scale interpretation in medical imaging. Detailed examples of model behaviors are expected in current clinical practices to promote reliability and improve clinical decision making. Furthermore, the primary challenge for designing explainable models is to provide rationales while retaining high learning results as one of the most exciting areas of medical imaging science.
We hope to attract novel, high-quality research and survey papers that represent the most recent developments in ML models in innovative medical imaging (MRI, CT, PET, SPECT, Ultrasound, histology and others) modalities or multi-modalities, by investigating novel methodologies either by interpreting algorithm components or by exploring algorithm-data relationships.
We invite researchers from universities, hospitals, and industry to discuss their cutting-edge technological advances in all areas of ML models of cancer imaging, including novel imaging techniques (e.g., fast imaging, reconstruction and denoising etc.), multi-modality, multi-scale, multifactorial data analysis and data harmonization, explainable and interpretable artificial intelligence, radiomics and radiogenomics models, machine learning, and artificial intelligence in general.
Potential topics include but are not limited to:
● Create and interpret ML models for single- or multi-modal imaging (MRI, CT, Ultrasound, PET, SPECT).
● Multi-modality medical image multitask learning
● Improve explainability in cross-domain image synthesis between various imaging modalities or sequences (e.g., from different MRI sequences, or MRI and CT, etc.)
● Medical image transfer learning for single- or multi-modality images
● Novel imaging technologies for cancer, e.g., fast imaging, reconstruction, and denoising
● Quantitative imaging biomarker extraction and analysis
Please note: manuscripts consisting solely of bioinformatics or computational analysis of public genomic or transcriptomic databases which are not accompanied by validation (independent cohort or biological validation in vitro or in vivo) are out of scope for this section and will not be accepted as part of this Research Topic.
Keywords: cancer imaging, radiomics, multi-modality, machine learning, cancer characterization, biomarkers
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.