About this Research Topic
The process of self-assembly―where building units of a system organizes into an ordered and/or functional structure via internal arrangement of molecules―has attracted researchers from a broad range of disciplines that varies from chemistry and material science to engineering and technology. Advances in controlled self-assembly depend upon expanding the ability to create biologically inspired complex materials with well-defined multidimensional structures. A constantly expanding library of available molecules is being produced, rendering them attractive precursors for complex self-assembled structures. Particularly, this novel strategy provides more opportunities in optimizing morphological and physicochemical properties through design and synthesis of molecular building blocks. Significant progress has been achieved in non-trivial synthetic routes to obtain these building blocks and in the understanding of novel hierarchical self-assembly phenomena, pushing forward the frontiers of the field. Thus, amalgamating the chemistry of controlled self-assembly along with biomaterials science will efficiently produce innovative functional biomaterials with programmable functions via self-assembly.
Advances in the areas of nano- and bio-technology demand for the development of complex structures and biomaterials that would resemble living systems. Herein we will focus on the design, synthesis, characterization, and manufacturing of controlled self-assembly behavior of organic and polymeric biomaterials, which present unique characteristics enabling the access to a wealth of superstructures and advanced materials with tuneable properties (shape, size, surface characteristics, etc.). We will embrace related but diverse research disciplines and areas such as organic chemistry, supramolecular chemistry and self-assembly, polymer chemistry, coordination chemistry, colloid and surface chemistry, biomaterials, environmental science, nanotechnology, nanoscience, as well as functional biomaterials science. This Research Topic aims to highlight the recent advances in the development of novel building blocks, the hierarchical and reversible assembly and disassembly properties of the generated systems, together with advanced characterization methods to investigate the structure and dynamics of the assemblies for giving a current overview of their practical bio-applications in nanomedicine and regenerative medicine, high-throughput screening, drug delivery, and organ-on-chip development.
Keywords: molecular self-assembly, controllable materials with programmable functions, functional biomaterials, environmental (pH, enzyme, light, ultrasound, etc.) responsive nanostructures, supramolecular/noncovalent interactions, self-assembly hydrogels, drug delivery, biofunctionalization, regenerative medicine
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.