The main physiological actions of the biologically most active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are calcium and phosphorus uptake and transport and thereby controlling bone formation. Other emergent areas of 1α,25(OH)2D3 action are in the control of immune functions, cellular ...
The main physiological actions of the biologically most active metabolite of vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are calcium and phosphorus uptake and transport and thereby controlling bone formation. Other emergent areas of 1α,25(OH)2D3 action are in the control of immune functions, cellular growth and differentiation. This fits both with the widespread expression of the VDR and the above described consequences of vitamin D deficiency. Transcriptome-wide analysis indicated that per cell type between 200 and 600 genes are primary targets of vitamin D. Since most of these genes respond to vitamin D in a cell-specific fashion, the total number of vitamin D targets in the human genome is far higher than 1,000. This is supported by the genome-wide view on VDR binding sites in human lymphocytes, monocytes, colon and hepatic cells. All genomic actions of 1α,25(OH)2D3 are mediated by the transcription factor vitamin D receptor (VDR) that has been the subject of intense study since the 1980’s. Thus, vitamin D signaling primarily implies the molecular actions of the VDR. In this research topic, we present different perspectives on the action of vitamin D and its receptor, such as the impact of the genome-wide distribution of VDR binding loci, ii) the transcriptome- and proteome-wide effects of vitamin D, iii) the role of vitamin D in health, iv) tissue-specific functions of vitamin D and v) the involvement of vitamin D in different diseases, such as infections, autoimmune diseases, diabetes and different types of cancer. Approximately 15 chapters will be provided by experts in the field. For details please see the list of suggested titles.
Important Note:
All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.