About this Research Topic
The occurrence of clinical symptoms in malaria patients is dependent on the release and invasion of merozoites during the erythrocytic stage of the parasite. One single merozoite contains approximately 5,000 proteins for their survival which could be potential therapeutic targets. The malarial merozoite shares several antigen homologs between the species, however, the function of that antigen shows different properties. For example, Duffy Binding Like/Erythrocyte binding antigen (DBL/EBA) proteins of P. falciparum, P. vivax, and P. knowlesi interact with different human red blood cell receptors. However, some studies have shown that other malaria antigens can provide cross-species protective immunity. Current malaria vaccine development strategies focus on identifying a specific, immunogenic antigen which will stimulate protective humoral immune responses, and produce sufficient amount of the specific functional antibody to provide sterile immunity against malaria infection.
Thus, the study of an antigen’s characteristics will lead us to a better understanding of malaria biology and pathology. This basic research, at the genetic level all the way to protein function, is fundamentally important for future vaccine development against human Plasmodium species.
This Research Topic welcomes manuscripts on all Plasmodium species antigen characterization and identification such as human, rodent, avian, or non-human primate malaria. This wide range of Plasmodium species antigen characterization from gene to protein, will help us better understand infectious microorganisms’ evolution, genetic variation, and antigen function for future vaccine development.
We welcome the submission of Original Research articles and Review articles on the following subtopics:
• Specific antigen genetic diversity and natural selection pressure of Plasmodium species;
• Novel antigen characterization and/or identification in Plasmodium species;
• Evaluation of Plasmodium antigens as potential vaccine candidates or targets; and
• Serological prevalence study against specific Plasmodium antigens.
Keywords: Malaria, Plasmodium vivax, Plasmodium falciparum, Plasmodium, Antigen, Protein, Antibody
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.