About this Research Topic
The goals of this Research Topic are to provide:
1. An update of the understanding of the mechanisms involved in microbiologically influenced corrosion (MIC) of metals;
2. An update of the understanding of the mechanisms involved in microbiologically influenced deterioration (MID) for non-metals such as various polymers like, but not limited to, high density polyethylene (HDPE) and low density polyethylene (LDPE) when exposed to MID-inducing bacteria;
3. An update of the understanding of the mechanisms involved in microbiologically influenced corrosion inhibition (MICI) for metal alloys;
4. Tools for MIC/MID identification and monitoring;
5. Detailed interpretations of failure cases where MIC could be the main cause of premature failure in terms of the root cause analysis and Failure Mode and Effects Analysis (FMEA);
6. An assessment of the economic and environmental impacts of MIC failures on the basis of modelling/interpretation.
The Research Topic welcomes contributions focusing on, but not limited to:
• Applied and pure research on biofilm formation and the role of external electron transfer as related to MIC/MID mechanisms and enhanced corrosion;
• The mechanisms involved in decelerating corrosion by bacteria involved in MIC (for example, iron-reducing bacteria);
• Case histories related to Bacteria-induced MIC/MID of various equipment and materials (metallic /non-metallic);
• Case histories related to Archaea-induced MIC/MID of various equipment and materials (metallic /non-metallic);
• MIC/MID monitoring on-line and off-line;
• Advanced mathematical modelling of MIC/MID reactions and biofilm formation;
• Modelling of environmental and economic impacts of MIC/MID;
• Use of green and natural (e.g., plant extracts) as alternatives to synthetic biocides; and
• Next generation, smart, eco-friendly coatings as antimicrobial coatings.
Topic Editor Reza Javaherdashti is the current General Manager at Eninco B.V., (The Netherlands)
Supervisor to the project of Anti-microbial coating
Head of Nanobiomining Project
Keywords: corrosion, Microbiologically Influenced Corrosion, MIC, Electrical MIC(EMIC), Chemical MIC(CMIC), Microbiologically Influenced Deterioration, microbe, rust, antimicrobial coating, iron-reducing bacteria, biofilm, biofilm formation
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.