About this Research Topic
Using metagenomics to recover genetic material directly from environmental samples, this biogenetic diversification can be accessed but despite the contributions from metagenomic technologies the new field requires major improvements.
A few words on the complexity of marine environments should be added here. This complexity ranges from symbiotic relationships to biology and chemistry of defence mechanisms and from chemoecology of marine invasions up to the strategies found in prokaryotes to adapt to extreme environments. The interdisciplinary study of this complexity will enable researchers to find an arse-nal of enzymes and pathways greatly demanded in biotechnological applications.
As far as marine enzymes are concerned they may carry novel chemical and stereochemical properties, thus biocatalytically oriented studies (testing of suitable substrates, appropriate checking of reaction conditions, study of stereochemical asset of catalysis) should be performed to appropriately reveal this “chemical biodiversity” which increases interest for these enzymes.
Among other biomolecules, polysaccharides are the most abundant renewable biomaterial found on land and in oceans. Their molecular diversity is very interesting; except polysaccharides used traditionally in food and non-food industries, the structure and the functionality of most of them are unknown and unexplored. Brown seaweeds synthesize unique bioactive polysaccharides: laminarans, alginic acids and fucoidans. A wide range of biological activities (anticoagulant, antitumor, antiviral, anti-inflammation, etc.) have been attributed to fucoidans and their role with respect to structure-activity relationship is still under debate.
In this Research Topic, we wish to centralize and review contributions, idea and comments related to the issues above. In particular results of enzymatic bioprospecting in gross marine environment will be acknowledged along with research for structural characterization and biological function of biomolecules such as marine polysaccharides and all kind of research related to the complexity of bioprocesses in marine environments. Inter- and multi-disciplinary approach to this field is favoured in this Research Topic and could greatly be facilitated by the web and open access nature as well.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.