About this Research Topic
On the other hand, mitochondrial dysfunction- caused by an overt accumulation of mitochondrial DNA mutations, altered calcium levels, and mitochondrial-derived reactive oxygen species- contributes to age-related cognitive decline and underlies the etiology of many age-related neurodegenerative disorders including Parkinson’s disease, Lewy Body dementia and Alzheimer’s disease. Mitochondrial dysfunction is defined by a progressive decrease in mitochondrial-derived ATP, a lack of mitochondrial mobility (trafficking) to distal sites of dendrites and axons, a decrease in transmembrane potential leading to inefficiently coupled mitochondria, overtly fragmented mitochondria and an inability to handle cytosolic calcium. However, how normal brain aging leads to mitochondrial dysfunction and the pathological mechanisms by which mitochondrial dysfunction contribute to neurodegeneration and cognitive decline in age-related neurodegenerative disease are beginning to be elucidated.
For this Research Topic, we welcome the submission of original and high quality research manuscripts and reviews that focus on the interplay that altered bioenergetics, oxidative stress, mitochondrial dysfunction and altered mitochondrial calcium handling contribute to the pathogenesis of age-related cognitive decline and neurodegenerative diseases. Reviews that focus on recent advances in the development of “mito-protective therapies” to reverse mitochondrial dysfunction and neurodegeneration are also welcome.
Keywords: mitochondrial dynamics, mitochondrial import, mitochondrial biogenesis, calcium signaling, mitophagy, mitochondrial trafficking, bioenergetics, oxidative stress, neurotrophic signalling, neurodegeneration
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.