About this Research Topic
To withstand extreme environmental conditions, such as elevated temperatures and low pH, archaea have evolved distinct strategies in chromosome organization and DNA transactions by employing unique proteins or enzymes. In Crenarchaea, a widespread lineage of thermophilic archaea, typical archaeal histones are substituted in most species with several small basic chromatin proteins. How these proteins compact and organize genomic DNA is less clear. For DNA replication, repair and recombination, a lot of new enzymes or subunits of the complexes involved have also been isolated from thermophilic archaea and well characterized in vitro. Large multi-component complexes functioning as a molecular machinery in these processes, however, are rarely reported to now, implying that more components and protein-protein interactions need to be discovered. In addition, the control mechanisms of DNA replication and repair, which may be connected with chromatin organization and post-translational modifications, remains to be understood. Taken together, the diversity of the genetic mechanism of thermophilic archaea may have resembled a melting pot, from which the sophisticated system common to eukaryotes has emerged.
The aim of the current Research Topic is to fill the gaps in our knowledge on the molecular mechanisms of chromosome organization and cellular DNA transactions in thermophilic and hyperthermophilic archaea. The topic welcomes Original research, Review, and Mini-Review articles. Areas of interest may include, but are not limited to, the following:
• Chromosomal DNA organization
• Structures and functions of the proteins/complexes involved in DNA replication, repair and recombination
• Replication and integration of viral DNA
• Mechanisms of transcription regulation
• Functions of post-translational protein modifications
• Advanced techniques for studying DNA transactions
• New genetic tools
Keywords: Thermophile, Hyperthermophile, Archaea, Archaeal virus, Chromosome organization, DNA replication, DNA repair, DNA recombination, RNA transcription
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.