About this Research Topic
Both thermal energy storage systems and thermochemical fuel conversion rely on materials that must withstand repetitive cycling at high temperatures and with changes in pressure that negatively affect their structural stability over cycling. In the last decade, many efforts have been focused on obtaining more efficient materials with high durability and high energy storage density or enhanced fuel yield production. Despite the recent, promising advances in the field, novel and cost-effective systems and materials with improved stability and performance are required for improving the overall efficiency of these technologies.
This Research Topic covers the recent progress on developing more efficient systems and materials for high temperature thermal energy storage and thermochemical fuel production. We welcome original research articles, reviews or perspectives including but not limited to the following topics:
• Development of materials for thermochemical heat storage based on gas-solid reactions (carbonates, hydrides, hydroxides, redox oxides…)
• Development of thermochemical heat storage systems based on gas-gas reactions, e.g. ammonia
• Development of PCMs for high temperature energy storage (TES)
• Integration of thermal energy storage (sensible, latent, thermochemical) and/or hybridized systems in CSP plants
• Technoeconomic analyses of TES systems in CSP plants
• Development of redox oxides for thermochemical CO2 and H2O splitting
• Materials for solar-driven chemical looping reforming of methane
• Computational studies for the design of novel materials for solar-fuel production
• Solar-driven processes for CO2 capture and air separation
• Design of high temperature reactors for TCS and solar-driven fuel production
• Integration of CSP in high temperature industrial processes
• Solar biomass gasification
Keywords: Concentrated Solar Power, Thermal Energy Storage, Solar fuels, Thermochemical cycles, Hydrogen production
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.