About this Research Topic
It is well known that PTMs can regulate protein activity, localization, recycling and interaction with other cellular constituents. A given PTM might function differently because of its different target proteins, and different PTMs might function similarly, which makes it necessary to comprehensively profile the proteome at the PTM level. To facilitate such study, techniques that apply to the enrichment of PTM-containing proteins (or peptides) and mass spectrometric identification of PTMs, as well as PTM predictions, should be developed. More importantly, PTM level proteomics studies should be performed under physiologically relevant contexts, in order to obtain functional insights. To achieve this, attention should focus on method development and improvement.
Studies in the field of plant proteomics focusing on PTMs are all welcome, together with relevant functional characterization and hypothesis-driven physiological insights. The themes include but are not limited to the development of techniques, software and databases, profiling of PTM-level sub-proteomes, the discovery of new PTMs, and functional characterization of PTMs in specific biological processes.
Submissions of review, original research, short communication and commentaries are welcome.
Please note that descriptive collections of proteins will not be considered for review unless they are expanded and provide mechanistic and/or physiological insights into the biological system or process being studied.
Keywords: Affinity purification, Cell signaling, Mass spectrometry, Proteomics, PTMs
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.