About this Research Topic
From a mechanistic perspective, cryptochromes are closely evolutionarily related to photolyases, a class of light-activated DNA repair flavoenzymes which undergo redox reactions. Therefore, all cryptochromes share important structural and biochemical characteristics. Intriguingly, recent developments have suggested that cryptochromes may respond to magnetic fields as well as to light, and that this property has likewise been conserved among cryptochromes from different organisms.
As a consequence, cryptochrome photoreceptors are being studied over a vast array of scientific disciplines ranging from plant, animal, and microbial biology to ecology, evolutionary biology, and medicine. Furthermore, numerous studies in the fields of chemistry, crystallography, biochemistry, biophysics, mathematics, and theoretical physics are probing the underlying mechanisms of how cryptochromes function. Much of this work is however only peripherally accessible to cryptochrome researchers outside of their immediate fields of specialization.
The goal of this Research Topic is therefore to provide reviews of foundational and cutting-edge findings that are accessible to a broad audience. It endeavors to consolidate and stimulate fundamental research as well as provide the groundwork for transformational innovation in biotechnical and therapeutic applications.
Finally, cryptochromes are of increasing interest to the newly emerging field of Quantum Biology. Thus ‘Decrypting’ the cryptochromes might provide an important missing link for understanding how these forces impact on biological systems.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.