About this Research Topic
Uncertainty in sensory systems takes a huge variety of forms. At low levels, uncertainty might result from noisy stimuli or poor-quality sensory data. Multisensory integration and the use of Bayesian priors can yield good-quality estimates from data corrupted at lower sensory levels. At higher levels, ambiguity, surprise and conflict between sensory data and learned associations can also contribute to uncertainty. Phenomena such as bistable perception and visual illusions can illustrate the brain’s attempt to resolve high level surprise or ambiguity.
Coping with the inherent uncertainty in the world requires the brain to accurately represent the extent of this uncertainty, at both low and high levels. Both Bayesian approaches and the investigation of ‘metacognition’ have sought to understand how and why the brain represents the uncertainty of stimuli and perceptual processes.
Psychophysical, behavioural, electrophysiological, neuroimaging and computational approaches have all contributed to our understanding of how the nervous system manages perceptual uncertainty and all these approaches will be welcomed for this research topic.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.