Next Generation Sequencing technologies are increasingly revealing that microbial taxa likely to be parasites or symbionts are probably much more prevalent and diverse than previously thought. Every well studied free-living species has parasites; parasites themselves can be parasitized. As a rule of thumb, ...
Next Generation Sequencing technologies are increasingly revealing that microbial taxa likely to be parasites or symbionts are probably much more prevalent and diverse than previously thought. Every well studied free-living species has parasites; parasites themselves can be parasitized. As a rule of thumb, there is an estimated 4 parasitic species for any given host, and the better a host is studied the more parasites are known to infect it. Therefore, parasites and other symbionts should represent a very large number of species and may far outnumber those with 'free-living' lifestyles. Paradoxically, free-living hosts, which form the bulk of our knowledge of biology, may be a minority! Microbial parasites typically are characterized by their small size, short generation time, and high rates of reproduction, with simple life cycle occurring generally within a single host. They are diverse and ubiquitous in the environment, comprising viruses, prokaryotes and eukaryotes. This Frontiers Research Topic welcomes contributions that address all aspects of parasites and other symbionts in microbial ecology: method development, life cycle, interactions with hosts and competing microbes, coevolution, effects on food webs and biogeochemical cycles, etc.
Important Note:
All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.