About this Research Topic
The aim of the current Research Topic is to highlight the latest developments in the field of biofabrication using 3D bioprinting technology. Deposition of biomaterials (such as, hydrogels or other biomedical polymers) alone or in combination with cells to maintain optimal cell viability and function is limited by several factors before, during and after the bioprinting process. Besides a proper vascular network formation, major challenges in biofabricating tissues that fully mimic the in vivo microenvironment found within our body include:
- mechanical tissue properties;
- tissue maturation;
- stem cell homing;
- extracellular matrix deposition and organization;
- inflammatory response;
- tissue function.
Types of manuscripts to be featured mainly include Original Research and Perspective articles. Review articles that describe the current state-of-the-art in hybrids for specific tissue regeneration (e.g. hybrids for bone regeneration and wound healing) are welcome.
Topics to be investigated in this unique collection may include (but are not limited to):
• 3D bioprinting of fully vascularized tissues;
• In vitro disease modeling using vascular cells, stem cells and 3D bioprinting technology;
• Tissue regeneration using 3D bioprinted vascularized constructs;
• Stem cell maturation within 3D bioprinted vascularized tissues;
• 3D bioprinted vascularized high-thoroughput assays
• Vascularized organoid generation using 3D bioprinting technology.
Keywords: 3D bioprinting, Vascularization, 3D cultures, Disease Modelling, Transplantation
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.