About this Research Topic
Nurtured by the scientific exploration of the learning model in the cerebral cortex, deep learning algorithms have rapidly evolved into a diverse group of applications competing with their siblings, the traditional machine learning algorithms. Projects like AlphaGo or TossingBot, whose core is built on deep learning infrastructure, have demonstrated high performance, with evidence of outperforming humans in specific. While deep learning has relieved the burden of systematic feature engineering, it currently suffers from the time needed for training, high cost, and the size of the data. Aside from these, the lack of validated domain-specific neural network architecture and the reported instabilities in the fine-tuning phase of deep learners have led researchers to limit their deployment to a routine based on a guess and check strategy. The guess and check strategy for the design and implementation of deep neural networks needs to be improved when the problem becomes more complex, e.g., including time-varying and context-dependent processes, as is the case for pediatric neurological disorders. The varying dynamics of the problem, which the deep learner solves, is due to the joint nature of two inter-related categories of processes, the ones related to brain development and those led by the neurological disorder, both of which are highly dynamic processes depending on factors like age. Therefore, the design and deployment of deep learners for pediatric neurological disorders are like hitting moving targets. The application of deep neural networks needs to be further enriched with a more objective design and deployment, fitting the problem constraints we have reviewed. When addressed adequately despite challenges, these constraints will open a new era of scientific discoveries and applied solutions to the field.
We, therefore, cordially invite authors to submit their manuscripts (hypothesis & theory, methods, original research, review and mini-review, perspective, general commentary, new discovery) to the current Research Topic on “Deep learning for neurological disorders in children”. Specific themes we would like contributors to address include, but not are limited to:
• Deep learning for the diagnosis of neurological disorders in children
• Prognostic values of deep learning in pediatric neurological disorders
• The role of deep learning in delineating pathways of neurological disorders in children
• Methodological constraints and solutions to the successful deployment of deep learning algorithms for studying neurological disorders in the pediatric population.
• Deep learning as a bridge from the basic science of pediatric neurological disorders to its clinical application.
• Deep learning as a decision guide supported by the multi-modal big data for studying neurological disorders in children.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.