About this Research Topic
Research on the properties of neutron stars is pushing the boundaries of astrophysical theory, scientific computational/numerical infrastructure, and observational/experimental resources and techniques. The goal of this Research Topic is to describe current and future efforts to understand neutron stars in the three broad areas of neutron star modeling, numerical methods for applying the models, and current and future neutron star observations using the tools and techniques of modern astronomy including those offered up by the new field of gravitational wave astronomy. The resulting Research Topic will be among the first to offer a comprehensive view of neutron stars in this new age of multi-messenger astronomy/astrophysics. With the added discussion on future observations, this Research Topic should serve as a guide to young researchers, assisting them as they search for their own niche of exploration.
This Research Topic will be classified according to three broad themes: (1) neutron star theory and models, (2) numerical methods used to apply the models, and (3) current and future neutron star observations. Within each theme, authors are invited to submit Original Research, Reviews as well as Mini Reviews on particular aspects of neutron star research. In total, this Research Topic will have contributions that will give detail to the basic, overall picture of neutron star structure:
• The neutron star exterior, with large magnetic fields, electromagnetic radiation, and gravitational waves;
• The outer crust;
• The inner crust, with “pasta”-shaped nuclei and superfluid neutrons;
• The outer core, with superfluid neutrons and superconducting protons;
• The inner core, which may contain an exotic form of matter known as deconfined quarks.
Keywords: Neutron star cooling, Superfluidity, Gravitational waves, Binary merger, Pulsar timing arrays, Magnetars
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.