About this Research Topic
The present Research Topic welcomes work on engineering microbial energy metabolism, with the prime objective to improve the bioprocess performance of industrial strains: raising the yield and productivity of target product(s), controlling of cell yield, or increasing the robustness to various stress conditions. Studies of any metabolic type of traditional or potential (upcoming) producer microorganism are relevant for the Topic, including both chemotrophs and phototrophs. Manuscripts may have their emphasis either on experimental wet lab work or on modeling, or ideally, combine both approaches. As a result, we hope to obtain a comprehensive picture of recent developments in the field that could serve as a road-map to facilitate further research.
All types of articles are welcome, including Original Research, as well as Reviews and Perspective papers, devoted to:
• Manipulation of respiratory chain modules aimed at changing the net H+/O stoichiometry and/or kinetics of electron transport, in order to improve synthesis of the target product(s)
• Engineering of energy-coupling at the level of ATP synthase/ATPase and membrane transport reactions; design or elimination of futile cycles
• Respiratory redox cofactor engineering (e.g., modifying specificities towards NADH vs NADPH)
• Manipulation of the photosynthetic electron transport e.g., in microalgal or cyanobacterial producer strains
• Electron transport chain modifications enhancing the producer strain resistance to oxidative, thermal, pH, salt, lignocellulose hydrolysate inhibitor, osmotic, and other industrial stresses
• Fundamental studies investigating the impact of ATP/ADP or NADH/NAD+ perturbations on cellular performance using omics technology (e.g. transcriptomics, proteomics).
• The regulatory interactions of cellular energy management and metabolism
Keywords: Electron Transport, Energy-Coupling, Product Yield, Stress Resistance, Redox Balance
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.