About this Research Topic
Yeast populations are both genetically and epigenetically heterogeneous in their behavior and responses to cell stress and anti-fungal agents. This heterogeneity can be a result of transcriptional noise, differentiation in spatially distinct microenvironments, genetic variation through selection of natural replication errors and aging of individual cells. Cell-cell heterogeneity can also arise from asymmetric division when S. cerevisiae actively sort their intracellular constituents between mother and daughter cells. All these factors impinge on cell behaviors within yeast cell aggregates and colonies where spatial differentiation of individual cells resembles multicellular organisms, and where cell growth and death are ongoing processes. Although the evolutionary conservation and biological roles of programmed cell death in yeast are still unclear, the cell death mechanisms are of special practical interest as potential therapeutic targets. By studying cell death pathways induced by cell stress and chemical compounds, we gain additional insights into drug resistance mechanisms.
In this Research Topic, we aim to gather a fresh look at yeast aging and cell death as a terminal part of genetically regulated developmental programs. We welcome Original Research, Review and Methods articles addressing the following aspects of yeast biology:
• Genetic heterogeneity in yeast populations
• Individual cell heterogeneity and bet-hedging of yeast clonal populations
• Asymmetry of cell division and yeast replicative aging
• Yeast death and differentiation in stationary phase
• Development and differentiation of yeast colonies and biofilms
• Physiological scenarios of regulated and programmed cell death
• Mechanisms of drug resistance and drug-induced cell death
• Gene mutation-driven genome evolution
• Acquired mutations in nutrient-sensing pathways
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.