About this Research Topic
In the last few decades molecular and genetic studies on aging have relied on canonical model organisms (i.e. the organisms of choice in biomedical research), namely yeast, nematode worms, fruit flies and – to a more limited extent - the mouse. These systems have allowed systematic investigations that provided fundamental conceptual advances.
More recently, the introduction of high-throughput technologies has facilitated genome sequencing, and non-canonical animal models, specifically selected for their exceptional life history, have entered in the aging arena.
Investigations of organisms of different physiology and phylogenetic relationships can certainly offer new study perspectives and interesting insights/cues for the understanding of many aging processes that remain uninvestigated and/or unexplained. In particular, animals that show either an exceptionally short lifespan (for example the turquoise killifish) or exceptional longevity (for example the naked mole rat) have been widely explored in recent times.
In this collection we welcome reviews and original research papers that make use of - or discuss the use of - non-standard model organisms for cellular aging research, including:
• Epigenetics of aging
• Cellular senescence
• Protein aggregation
• Neurodegeneration
• DNA damage
• Somatic mutations
• Telomere erosion
Contributions employing -omics approaches (comparative genomics, transcriptomics, and proteomics) are welcome, in addition to research using classical biochemical, molecular and cellular approaches.
Our ultimate aim is to provide the scientific community with the most updated and in-depth picture of comparative approaches to understanding aging.
Keywords: aging, non-standard model, age-dependent neurodegeneration, comparative studies, cellular senescence, longitudinal studies, life extension
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.