About this Research Topic
Interestingly, such complex altered chromosomes were initially described in the cytogenetic community. Clonal complex chromosomes can be reliably observed from cancer evolution and confirmed by experimental protocol of in vitro induction. The terms 'genome chaos', or 'karyotype chaos', have been coined to describe such fast and massive genome or chromosome re-organization under crisis. Moreover, the causation of genome chaos have been linked to cellular stress, diverse molecular mechanisms, the creation of new karyotype coding, induced genome instability and cellular survival, and the evolutionary mechanisms of cancer. A genome-based evolutionary and informational framework and platform open the different frontiers to systematically understand this important phenomenon.
While it is foreseeable that many different molecular mechanisms that contribute to different developmental and disease conditions will be continuously identified, these individual mechanisms can be, and should be, unified under the stress induced system response and evolutionary progression.
The aim of this Research Topic is to showcase that diverse types of genome chaos (including chromothripsis and chromoplexy) can be commonly detected, and that different sub-types of genome chaos can be explained by specific molecular mechanisms and further unified using the framework of cellular stress and its response during somatic evolution. By integrating molecular mechanisms and evolutionary mechanisms, this Research Topic will highlight the current state of the art of studying genome re-organization and their biological significance in the developmental process, as well as in disease progression and treatment, with particular interest to cancer.
We welcome articles falling under the following topics:
• Studies on how genome re-organization impact various biological processes.
• Studies on how telomere crisis, ER stress, or drug treatment leads to genome chaos.
• The relationship between key features of genome chaos (e.g. chaotic degree or types of chaotic genomes) and type of cellular stress.
• The clinical value of using chaotic genomes to study somatic evolution or developmental process or treatment response.
• The relationship between different types of chromosomal abnormality under crisis.
• How different types of genome chaos change the karyotype coding.
• Development of bioinformatic tools to convert the sequence data to cytogenetic data, or to quantitatively measure the chaotic genome.
• How commonly genome chaos is involved in earlier development and aging processes.
Keywords: Genome chaos, Cellular Stress, Karyotype Coding, Cancer Evolution, Genome Reorganization
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.