About this Research Topic
Currently, there is growing interest in focusing on the role of ROS in many biological and (photo)chemical processes from a mechanistic point of view. Indeed, great attention has been directed at the identification, quantification, and kinetics evaluation of ROS in complex samples even in cells and in vivo, which appear decisive for most important issues in the chemical, biological, and medical fields. Many approaches have been developed for ROS detection. At the same time, the design of organic, inorganic, and hybrid organic/inorganic nanomaterials with redox-active properties has attracted scientific interest, with the aim to produce multifunctional nanomaterials for biological or (photo)chemical applications, for example as antioxidants (ROS-scavenging activity) or antimicrobials, catalysts, or for photodynamic therapy (ROS-generating activity). The possibility to realize bio-inspired and/or bio-sustainable redox nanomaterials represent a promising scenario for the development of biomedical and catalytic nanotechnology.
The aim of this Topic Research is to offer an opportunity for researchers to propose advances in:
• the monitoring of ROS role in many biological and/or (photo)chemical processes
• the design of multifunctional redox-active nanomaterials for biomedicine
• the design of hybrid nanostructured materials for (photo)chemical applications, with tailored properties at the nano‐, meso‐, and macro‐scale
• the understanding of chemical/molecular features of ROS involvement in the interaction of organic, inorganic, and hybrid organic-inorganic nanomaterials with biological environments
We welcome manuscripts for this Research Topic in the form of Original Research, Reviews and Mini-Reviews.
Keywords: reactive oxygen species, stress-oxidative activity, hybrid redox-active nanomaterials, biomedicine, photoactivity, advanced oxidation processes
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.