About this Research Topic
Hence, it is essential at this time to develop materials that control the growth of harmful bacteria. Recent advancements in science and technology have led to the development of novel drugs, molecules, coating technologies, and antibacterial materials for the control of bacterial infections and environmental effects caused by bacteria. Metals have been shown to have excellent antibacterial properties; they can selectively inhibit metabolic pathways and kill multi‐drug resistant bacteria. Similar to antibiotics, metals can differentiate between bacterial and mammalian cells due to the difference in their metal transport system and metalloproteins. This property allows us to employ metals as effective, long‐term antibacterial and biofilm-preventing material.
Metallic nanomaterials (such as silver, gold, copper, titanium, and so on) in particular can exert their antimicrobial effects over a particular range. The large surface area-to-volume ratio and the smaller dimension of nanomaterials compared to bacteria allow metallic nanomaterials to strongly interact with bacteria and biofilms and render their bactericidal effect. Metal nanoparticles (NPs) physically interact with bacterial cells through three major pathways: cell wall disruption, binding to cytosolic proteins (enzymes) and DNA, and production of reactive oxygen species (ROS) or oxygen free radicals. Extensively-studied metal NPs that have potential antimicrobial effects include silver, gold, and gallium. In the future, these metal‐based nanomaterials could be combined with antibiotics for optimal antimicrobial activity.
With this in mind, this Research Topic aims to bring together recent advances in the development of metal- and metal oxide-based antibacterial materials via reliable, ecofriendly, and cost-effective approaches to control multi-drug resistant bacteria. Thus, we welcome contributions that focus on the development, design, and application of antibacterial materials in the form of Review or Original Research articles. Key themes include, but are not limited to, the following:
• Design and characterization of novel metal- and metal oxide-based antibacterial materials, including nanoparticles and coatings
• Green synthesis or ecofriendly synthesis methods for metal- and metal oxide-based antibacterial materials
• New antibacterial metal or metal oxide composites
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.