About this Research Topic
These hypotheses are gaining support from recent studies. Many HERVs undergo epigenetic silencing in normal cells, but are reactivated by DNA hypomethylation in cancers at many loci. Aberrantly activated MaLR family (THE1B) LTR drives colony stimulating factor receptor 1 gene expression, which offers a novel mechanism of lymphoma tumorigenesis. HERV-K, the newest family of HERV, has been most extensively studied by molecular biology. The LTR activation and HERV-K-encoded proteins have been implicated in carcinogenesis of melanoma and breast cancer. HERV-H expression seems colon cancer-specific, whereas HERV-E produces renal cancer-specific antigens. HERV-Fc1 and HERV-W may be involved in pathogenesis of multiple sclerosis and other autoimmune diseases. Importantly, the finding of infectious endogenous retroviruses (ERVs) of domestic animals suggests a risk of zoonotic infection through vaccination and xenotransplantation.
On the other hand, Syncytins, HERV/ERV-encoded envelope proteins, are essential for placental tissue development. Mouse stem cell totipotency is detected with concomitant expression of MuERV-L. Moreover, some HERV components are useful for construction of gene expression vectors and vaccination.
These varied aspects of HERV/ERV researches have taken place in different disciplines: genetics, virology, oncology, and evolutionary biology. In this plan of ‘Frontiers Research Topic’, scientists from various backgrounds will bring their basic knowledge, new findings, ideas and technologies to create a more comprehensive understanding and to promote dialogue among researchers.
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.