About this Research Topic
In the past few decades, great progress has been made in the field of enzyme and whole cell immobilization. However, those biocatalysts still suffer from leaching, denaturation or inactivation, and restricted mass transfer, leading inevitably to a loss of their activities and service life. Accordingly, new theories, techniques and methodologies should be constantly developed to solve such problems. Especially, the following issues deserve attention and should be tackled:
(1) Design or discovery of novel enzyme/whole cell supporting materials with high loading capacity, favorable chemical and mechanical stability, wide applicability, high biocompatibility, as well as low cost;
(2) Development of advanced immobilization techniques, which allow the immobilization process to be facilely achieved with ideal repeatability, and retain the activity of biocatalyst to a maximum extent;
(3) Biocatalysis and its process regulation in non-aqueous systems, such as deep eutectic solvent and ionic liquid, to realize efficient transformation of selected substrates;
(4) Deeply revealing the interaction mechanisms between enzyme/whole cell and the supporting platforms from both chemical and biological perspectives, to rationally guide the design of supporting materials and immobilization processes;
(5) The application of immobilized enzyme or whole cell in the production of high-value added chemicals, especially energy related substances, functional food ingredients, pharmaceutical intermediates, etc.
The following areas can be covered in the scope of this Research Topic:
• Novel enzyme or whole cell immobilization materials;
• Innovative enzyme or whole cell immobilization techniques;
• Rational regulation of the biocatalytic process;
• Interaction mechanisms between enzymes/whole cell and the supporting platforms;
• Practical application of immobilized enzyme or whole cell;
• Enzyme or whole cell biocatalysis in non-aqueous systems;
• Synergistic catalysis of the immobilization materials and enzyme/whole cell;
• Rational design of the supporting platforms and immobilization processes.
Regarding the above scope, the following types of manuscripts are favored:
(1) Original Research; (2) Systematic Review; (3) Perspective; (4) Review; (5) Perspective; (6) Brief Research Report
Keywords: Enzyme Immobilization, Whole-Cell Immobilization, Biotransformation, Biocatalysis, Immobilization Materials
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.