About this Research Topic
The very first step in data analysis is the frequency extraction, then mode identification (if possible), and finally calculation of stellar models. The first step needs high precision data and long coverage. The second step calls for features that we can detect in amplitude spectra, which bear signature of mode geometry.
The features, with just a few exceptions, were never easily detected in ground based data. A detection of multiplets or asymptotic period spacings was precious, while stellar modeling was limited solely to forward method. We had not learned about long term behaviour of pulsating stars. Our knowledge was limited to conclusions made from analyses of data taken over individual nights or, in best cases, a few weeks, while a time-span measured in years was extremely rare.
Space instruments able to monitor individual objects for months, with reasonable cadence have
revolutionised our data analysis ability and understanding of all kinds of pulsating star. Now, we
better understand the long term behaviour, and we detect features useful for mode identification, owing to which the third step can provide us with more reliable solutions. We have also discovered new events giving rise to our extended knowledge of stellar pulsations.
Thus far, the Kepler spacecraft contributed the most and this Research Topic aims at providing a comprehensive overview of all the most important discoveries, detections, outcomes and conclusions achieved with the Kepler spacecraft that will give a potential reader all necessary insight into current achievements using asteroseismic techniques. It would also provide clues concerning the future of asteroseismology continued with TESS satellite.
The Topic will contain reviews on each individual type of pulsating stars, including those in binaries to provide a complete overview recent progress achieved in asteroseismology by using data collected with the Kepler spacecraft.
Keywords: Kepler spacecraft, pulsating stars, asteroseismology, space photometry, Fourier technique
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.