About this Research Topic
The degradation of cellulose to glucose typically requires the combined activity of endoglucanases, lytic polysaccharide monooxygenases (LPMOs), cellobiohydrolases and β-glucosidases, while hydrolyses of hemicellulose requires endoxylanases, β-xylosidases and accessory enzymes forming products like xylose, mannose, arabinose and ferulic acid. Conversely, lignin is degraded by different oxidases and peroxidases. The used cocktails of recombinant CAZymes are typically produced using filamentous fungi, mainly Aspergillus spp. and Trichoderma reesei, due to their efficient endogenous enzyme secretion pathways.
Although enzymatic degradation of plant biomass is well-established, due to the costs involved in the process, it is evident that more efficient enzyme production methods, as well as more efficient CAZymes and cocktails, need to be developed. For these purposes, several approaches can be applied to overcome bottlenecks and drawbacks that still limit CAZyme utilization: new strategies and tools, including “omics” approaches applied to gene prospection for the selection of highly active and stable CAZymes; design of CAZymes with improved characteristics by rational protein engineering; rational genetic engineering, or adaptive evolution of microbial strains to improve CAZyme production; introduction of biosynthetic enzymes to produce high added-value compounds from plant biomass substrates during hydrolysis. We would like to invite authors to contribute high-quality original research, as well as review articles, covering different aspects of enzyme-based hydrolysis of plant biomass in the context of optimizing biorefinery process, as well as the following areas:
• “Omics” based approaches aimed at prospection for improved CAZymes:
- Metagenome, metatranscriptome, and metaproteome based approaches
- Bioinformatics tools aimed at CAZyme bioprospecting
• CAZyme engineering for improvement of enzyme properties:
- Directed evolution of proteins
- Rational design of proteins
• Microbial strain engineering:
- Filamentous fungi, yeast and bacteria as protein/enzyme cell factories
- Engineering of gene expression and regulation related to CAZyme production
- System for homologous and/or heterologous expression in relevant organism
- Use of CRISPR/Cas9 for the construction of improved strains
• CAZyme application in biorefinery:
- Novel CAZyme cocktails for plant biomass deconstruction
- Use of biosynthetic enzymes to form new added-value products in biorefineries
Keywords: CAZymes, Biorefinery, Enzyme Engineering, Cell Factories, Omics Approaches
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.