About this Research Topic
Significant amounts of data have been generated, and databases are being created for cancer glycoconjugates due to the invention of MALDI and ESI ionization technology, and the application of ion-trap mass spectrometers in the analysis of glycoconjugates. Strategies to interpret these data, mostly generated by chemists, in a biological setting present challenge. The aim of this article collection is to identify and overcome the barriers to communication. Firstly, scientists of all fields must find generally applicable ways to communicate on glyco-data, i.e., what are and where are the structures identified by mass spectrometry or other methods. Secondly, how to interpret the glyco-data in the context of specific biological settings including cancer cell lines, cancer biopsy tissues, and disease models? Lastly, how to combine the glyco-data with other big data including genomics, proteomics, and epigenetics?
In this Research Topic, we welcome Original Research and Review papers that focus on:
1) New insights, new technologies and software programs to connect mass spectrometry data to public databases such as GenBank, GeneCards, UniProt, Mouse Genome Informatics, and TCGA.
2) Big data on N-glycopeptidome, O-glycopeptididome, Glycolipidome, and Glycan-binding proteins in cancer
3) Big data of glycosyltransferases and related genes, and functional units of glycoconjugates in cancer.
Keywords: big data, glycoconjugates, cancer, biomarker, targeted therapy
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.