About this Research Topic
On the other hand, considerable advances have been made in single cell level research using several high-throughput genomic tools. Recent advances in functional genetics research, particularly gene editing using CRISPR technology, has made developing tangible gene therapies for different human diseases very close to reality.
Interestingly, despite continuous progress in developing advanced genomic research and diagnostic tools, conventional options are still widely used and continue to contribute to the knowledge of the field. These include, but are not limited to, real- and quantitative PCR, Sanger sequencing, immunohistochemistry, and Fluorescent in situ hybridization (FISH). These tools remain of use in discovering different biomarkers in human disease research, especially cancer, cardiovascular and neurodegenerative research. In vivo animal models of varying complexity alongside in vitro stem cell research have greatly contributed to many of the above-mentioned advances in cellular and genomic research. However, further effort and innovative research ideas are still needed to fully understand the biology of human diseases.
Studying normal and abnormal gene expression and regulation is key to uncovering the cause of human diseases. It has been postulated that the set of genes which regulate normal embryonic development also become active in a dysregulated signaling machinery in the human diseases’ status. This demonstrates that studying gene expression and regulation in depth during embryonic development using functional approaches parallel to and/or in comparison with that in human disease could be vital to elucidate the causes of these diseases. This will contribute to moving basic research from bench to bedside.
In this multidisciplinary Research Topic, we aim to decipher the complexity of human diseases using basic and advanced genomic/genetic approaches. These include studying gene-gene and gene-environment interactions. Articles elucidating gene function and regulation during embryonic development that could lead to more understanding of the biology of human diseases’ complexity will be considered. We welcome a range of article types including original research, reviews, methods, study protocols, mini-reviews, perspectives, case reports, brief research reports, general commentaries, and opinions.
Keywords: Genetic tools, gene expression and regulation, human diseases, development
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.