About this Research Topic
To truly advance towards the complete replacement of conventional chemical processes based on petroleum, bioprocesses must first be developed and further optimized to a point where the natural or engineered bacterial strain performs at its best. With this, we will hopefully achieve the highest possible productivity of biopolymers by harnessing bioreactors that are guided by mathematical modeling and/or control. All these approaches are currently being applied for microbial synthesis of industrial biopolymers such as polyhydroxyalkanoates (PHAs), alginates, and polylactic acid (PLA), or building blocks of natural polymers like lactic, succinic, and adipic acid. The use of low cost substrates, or even waste materials, will have a substantial impact on the economics of biopolymer production and, overall, will eventually allow the rapidly evolving fields of industrial and systems biotechnology to contribute to a circular economy.
This Research Topic is intended to present a series of original articles and review papers covering recent developments on microbial synthesis of biopolymers such as PHAs, alginates, PLA and some of the precursors. This Topic also includes the description of novel biopolymer-producing strains, metabolic engineering of natural or novel pathways, design of new genetic circuits for synthesizing modified biopolymers, as well as process development in bioreactors for high-level production of target biopolymers.
Professor Bruce Ramsay holds a patent for a method of synthesising medium chain length polyhydroxyalkanoate. All other Guest Editors declare no competing interests with regards to the Research Topic subject.
Keywords: Polyhydroxyalkanoates, alginates, polylactic acid, succinic and lactic acid, metabolic engineering, process development
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.