About this Research Topic
Rapid advances in high-throughput technologies have produced distinct biomedical data sets that can be analyzed using mathematical and statistical models including network science tools to decode interactions between functional molecules in living cells. Machine learning, on the other hand, can handle heterogeneous data in different ways such as naive Bayesian Network data integration, Tree-Based Methods (e.g., random forest), and penalized linear models (e.g., LASSO). ML-based omics analyses provide assorted integrative analysis of multiple omics data, by analyzing different omics layers together. The discipline of Network biology is rapidly emerging with most recent applications to personalized medicine.
We welcome a variety of article types including Original Research, Review, Brief Research Report, Hypothesis and Theory, Methods, Mini Review, Perspective, Systematic Review, and Technology and Code. The topics of interest include, but are not limited to:
1) Machine learning, statistical methods, and computational tools for building biological networks,
2) Network-based analysis of disease.
Keywords: Genomics, Integrative analysis, Systems Biology, Machine learning
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.