About this Research Topic
The cation-permeable ionotropic ATP-gated purinergic P2X7 receptor, activated in multiple diseases of the central nervous system (CNS), expressed throughout the brain and mainly activated under the pathological conditions of high ATP release represents a potential link between neuronal hyperexcitability and glia-driven pro-inflammatory signaling.
Studies attribute a wide array of pathological functions to P2X7 in the brain, most prominently the activation of pro-inflammatory processes and regulation of neurotransmitter release. P2X7 activation has also been linked to other damaging processes shared by the majority of brain diseases such as the promotion of cell death, hyperexcitability and opening of the blood brain barrier, potentially contributing to both primary disease pathology and associated co-morbidities. Critically, increasing data demonstrates beneficial effects of P2X7 antagonism on pathology in several brain diseases including neurodegenerative, psychiatric and neurological diseases.
The aim of this Research Topic is to provide an overview of the therapeutic potential of P2X7 antagonism covering a broad range of different brain diseases and highlight novel developments of pharmacological and genetic tools to study P2X7 signaling in vivo.
Keywords: Brain diseases, Shared pathology, ATP, P2X7 receptor
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.