About this Research Topic
Lithium-oxygen/sulfur batteries are based on the oxygen/sulfur cathode and lithium anode, which have a high theoretical specific capacity and energy density due to the anion-redox reaction. Moreover, the oxygen/sulfur is cheap and environmentally friendly. Therefore, lithium-oxygen/sulfur batteries are two of the most promising next-generation batteries. Lithium metal is a promising anode due to its low potential, high theoretical specific capacity and low weight. Here, functional separators are highly important, which can not only improve the cycling performance, but also can increase the safety of the lithium metal anode.
Correspondingly, in order to accommodate these emerging materials, new electrolytes or additives which can support the aggressive chemistry of cathodes and improve the stability of the solid-electrolyte-interface (SEI) of anodes must become a focus.
It is critical to obtain further insight into smart material design and to better understand the mechanisms by which we can improve the energy density of lithium metal-based batteries. In this Research Topic, we sincerely encourage researchers to contribute their Original Research related to “Advanced Lithium-Ion and Lithium Metal-Based Batteries with High Energy Density”. Potential topics include, but are not limited to:
1) Cathode materials for LIBs, including traditional layered oxides, high-voltage spinel oxides, olivine or polyanionic compounds, as well as other multivalent cathode materials.
2) Anode materials for LIBs including Si, SiOx, metal oxides, and their composites.
3) Advanced cathode designs, catalysts and electrolytes for Li-O2 batteries.
4) Optimized designs for the cathode and separator of Li-S batteries.
5) Lithium anodes for high efficiency and safety of lithium metal batteries.
6) Electrolytes for efficient cycling and improved safety of lithium-ion and lithium metal batteries.
Keywords: energy storage, lithium ion batteries, lithium metal batteries, high energy density, long cycling life
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.