About this Research Topic
Among the various elements that biomolecules are composed of, sulphur is of special interest as it participates in many crucial, essential metabolic routes. Its exogenous assimilation and incorporation into biosynthetic pathways through the proteinogenic amino acids methionine and cysteine constitute the trans-sulphuration pathway, which is the core of sulphur metabolism. From there, sulphur derives and is incorporated in many different molecules that extend sulphur metabolism to a variety of processes relevant for cell homeostasis, fitness and also fungal virulence. For instance, redox homeostasis strongly relies on the sulphur-containing molecule glutathione, iron-sulphur clusters are essential co-factors of various enzymes, and some mycotoxins contain sulphur as active component.
Of particular relevance is the fact that several of the sulphur-dependent fungal processes are not well conserved in human cells, being either absent or differing significantly. Consequently, given its fundamental relevance for fungal viability and therefore pathogenicity, the study of sulphur metabolism opens opportunities for the identification of novel pan-fungal targets and the development of unprecedented antifungal therapies.
Keywords: Sulphur metabolism, Sulphur molecules, Fungal virulence, Target identification, Novel therapeutics
Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.