Understanding regional climate change is essential for guiding effective climate adaptation policy, study finds

A new synthesis of regional climate data highlights emerging climate change signals. Researchers emphasize the increasing intensity of monsoons, altered storm tracks, and polar precipitation shifts, underscoring the critical need for region-specific data to inform effective climate policies and protect communities from escalating risks. 

The effects of climate change are not distant future scenarios or confined to remote parts of the world—they are unfolding now, right in our own backyards. In 2023, extreme weather events impacted communities across every inhabited continent, causing major flooding, droughts, and wildfires.

While worldwide changes, such as increases in global mean temperature, often dominate discussions of mitigation actions, a detailed understanding of the regional impacts of a warming world is crucial for protecting communities from escalating risks. A team of researchers writing in Frontiers in Science synthesized results from multiple new studies to provide a clearer picture of these regional climate change impacts.

”We are constantly advancing our understanding of climate change, particularly its regional aspects, to inform policies aimed at adaptation,” said first author Matthew Collins of the University of Exeter, UK. “While global aspects remain important, humanity will feel the impact of climate change at the regional level. This is where infrastructure planning, extreme event preparedness, and management of public health and food security need to up-to-date climate science.”

Regional impacts and rising risks  

The study revealed a range of emerging climate change signals at the local level that are likely to occur this century, spanning from the equator to the poles.

In tropical and subtropical regions, dramatic changes in precipitation are expected to significantly alter monsoon intensity, leading to substantial societal impacts. Monsoon systems, which are critical for agriculture, directly affect billions of people. Approximately 60% of the world’s population resides in the northern hemisphere monsoon regions, where the summer monsoon season can deliver up to 80% of the annual rainfall. As aerosol emissions decrease and greenhouse gases rise, monsoons are predicted to become more intense, potentially resulting in floods, landslides, and reduced agricultural yields.

In the mid-latitudes, high-resolution climate models indicate a potential strengthening of storm tracks into northwestern Europe, increasing the risk of extreme weather.

”Increased monsoon precipitation and storm track rainfall variability can lead to droughts in some regions and high winds and flooding in others, resulting in devastating impacts on agriculture, essential infrastructure, and the overall health of communities,” said co-author Vikki Thompson, from the Koninklijk Nederlands Meteorologisch Instituut, the Netherlands.

In polar regions, projections show that a greater fraction of precipitation will fall as rain rather than snow, potentially accelerating ice melt and amplifying sea-level rise. This transition endangers coastal communities worldwide. Moreover, changes at the poles are not confined to those regions. Polar amplification, which refers to the phenomenon in which the poles warm faster than the rest of the planet, can influence weather patterns in the mid-latitudes, potentially altering storm tracks.


Read and download the article


Enhanced climate models can improve regional adaptation and resilience 

The study calls for a concerted, interdisciplinary effort in the scientific and policy communities to bridge the gaps in climate modeling. Higher-resolution data, integration of machine learning techniques, and new models will improve the simulation of complex climate phenomena at both global and regional levels. According to Eunice Lo, co-author from the University of Bristol, UK, such advancements are vital for informing international climate policies and ensuring that local adaptation measures—such as resilient infrastructure, enhanced early-warning systems, and sustainable agricultural practices—are based on the most reliable and precise data.

“Regional information is essential for preparing for these extreme events and implementing effective, science-led adaptation measures,” added co-author Matt Priestley, also from the University of Exeter. ”Without investments into advanced climate modeling and monitoring systems, policymakers and local communities are left navigating climate risks with insufficient information, which can lead to inadequate or misdirected efforts.”

The article is part of the Frontiers in Science multimedia article hub ‘Regional climate change impacts’. The hub features an editorial and two viewpoints from other eminent experts: Prof David Frame (University of Canterbury, New Zealand), Swadhin Kumar Behera (Japan Agency for Marine-Earth Science and Technology, Japan), and Prof Shang-Ping Xie (University of California San Diego, USA)—as well as an explainer with infographics. 

REPUBLISHING GUIDELINES: Open access and sharing research is part of Frontiers’ mission. Unless otherwise noted, you can republish articles posted in the Frontiers news site — as long as you include a link back to the original research. Selling the articles is not allowed.

About Frontiers in Science

Frontiers in Science is Frontiers’ multidisciplinary, open-access journal focused on transformational science to accelerate solutions for healthy lives on a healthy planet.

The journal publishes a select number of exceptional peer-reviewed lead articles invited from internationally renowned researchers, whose work addresses key global challenges in human and planetary health. Each lead article is enriched by a diverse hub of content that extends its reach and impact across society – from researchers and policymakers to lay audiences and kids.

For more information, visit www.frontiersin.org/science, follow @FrontScience on X, and follow Frontiers in Science on LinkedIn.