Skip to main content

GENERAL COMMENTARY article

Front. Psychol., 20 December 2016
Sec. Psychopathology

A Call for Complexity in the Study of Social Anxiety Disorder. Commentary: The aetiology and maintenance of social anxiety disorder: A synthesis of complementary theoretical models and formulation of a new integrated model

  • 1Department of Psychology, Harvard University, Cambridge, MA, USA
  • 2Psychological Science Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium

A commentary on
The aetiology and maintenance of social anxiety disorder: A synthesis of complimentary theoretical models and formulation of a new integrated model

by Wong, Q. J. J., and Rapee, R. M. (2016). J. Affect. Disord. 203, 84–100. doi: 10.1016/j.jad.2016.05.069

Wong and Rapee (2016) conducted a much-needed comprehensive review of etiological and maintenance models of social anxiety disorder (SAD) to formulate a cutting-edge integrative model. We agree that the threat value assigned to social-evaluative stimuli may act as core process bridging etiological (e.g., peer rejection) and maintenance (e.g., attentional bias for threat) factors of SAD that eliminate (e.g., avoidance) potential threat. Their model persuasively postulates multiple causal pathways and loops whereby variables increasingly reinforce the threat-value of social-evaluative stimuli so that they foster the development of secondary processes to further detect and reduce potential threat, culminating in full-blown SAD. We believe that the computational and conceptual tools of network analysis (Borsboom and Cramer, 2013) can render testable the complex dynamic features of their model.

During the last decade, network science has transformed disciplines such as ecology, physics, and sociology (Barabási, 2012). With the recent advances of Borsboom and his colleagues at both the theoretical (Borsboom and Cramer, 2013) and computational levels (Epskamp et al., 2012), we are entering the period when this “network takeover” (Barabási, 2012, p. 14) is opening up new vistas for understanding psychopathology (McNally, 2016; Borsboom, in press). At the simplest level, a network consists of nodes and edges that connect them. In psychopathology, nodes represent symptoms and edges represent association between symptoms. The network approach conceptualizes an episode of disorder as emerging from the dynamic interplay of symptoms. Symptoms possess independent causal powers that influence other symptoms; they are not merely passive indicators of an underlying disease. Hence, symptoms are constitutive, not reflective, of disorder (Borsboom and Cramer, 2013).

Of critical importance, network approach allows examining the extent to which nodes are central to the network based on the amount and direction of influence that flows from one node to other ones. Activation issuing from a highly central symptom can thus spread to other symptoms, thereby producing a full-blown episode of disorder. Given how Wong and Rapee postulates multiple maintenance factors whose persistence occurs via feedback loops among them, we believe that viewing these factors as intertwined nodes of a network, whose edges represent the association among them, can illuminate how these factors interact as whole system, causing and maintaining SAD.

Although evidence supports the associations of each of Wong and Rapee's factors with SAD, knowledge about the precise wiring of the model's pieces via the computational methods of network analysis would allow ranking the maintenance factors based on their level of centrality or influence within the entire network; a pivotal phase that may ultimately lead to the identification of factors that can trigger other ones, thereby propagating activation through the whole network and maintaining the disorder. Particularly, the authors postulate multiple contributing pathways and loops whereby variables increasingly reinforce the threat-value assigned to social-evaluative stimuli. Consequently, threatening social-evaluative stimuli should exhibit the highest level of centrality within the entire network. Likewise, Wong and Rapee hypothesize that the central role of the threat-value that is assigned to social-evaluative stimuli is reflected at the neurobiological level by amygdala activity, and especially dysfunctional connectivity between the amygdalae and the frontal areas. In this way, the application of network analysis over joint neuroimaging and laboratory-based measurements would allow to explore whether brain network does mimic psychological network, with the amygdala and the threat-value that is assigned to social-evaluative stimuli respectively acting as central hubs.

Wong and Rapee hold that interactions among the maintenance factors lead to full-blown SAD. Network analysis can test precisely how these processes unfold. For example, in addition to symptom reports, one can include laboratory measures tapping attentional bias for threat, executive control over attention, and so forth within the same computational process. For example, we recently demonstrated how avoidance of social situations and the orienting component of attention both act as core hubs within the entire network of SAD symptoms, attentional bias for threat, and measures of attentional control among patients with SAD diagnosis (Heeren and McNally, 2016).

Finally, Wong and Rapee also postulate that several etiological factors, such as bullying, culture, or inherited tendencies, influence how people assign threat-value to social-evaluative stimuli. Although traditional longitudinal studies allow tracking variables over time, recently developed computational methods allow exploring the within- and between-person temporal dynamics of networks (Epskamp et al., 2016a). In this way, such an approach may provide tools capable of testing whether the network trajectory vary across individuals with SAD so that the temporal dynamic interplay among the etiological factors conspire to transform the threat-value that is assigned to social-evaluative stimuli into a central hub among the network of maintenance factors. Moreover, as some etiological factors are stable (e.g., culture), techniques from network comparison (e.g., van Borkulo et al., 2015) may also help to identify the impact of a given etiological factor on the network dynamics. For instance, as the model assume that aspects of an individual's culture influence the interactions among the maintenance factors by foster the “centrality” of threat-value assigned to social-evaluative stimuli, comparing the network dynamics of individuals from Western countries to Asian countries would allow directly testing this assumption.

In many applications of network analysis, one need not estimate parameters. For example, to compute a network illustrating collaboration among scientists, one can directly ascertain whether two scientists have co-written one or more articles; one need not “estimate” whether they have published together. This does not hold for networks illustrating symptom-symptom connections; one must estimate these parameters (Epskamp et al., 2016b). To do so reliably requires many subjects when the number of parameter estimates is large (e.g., 362 subjects relative to 17 symptoms; McNally et al., 2015). Unfortunately, to integrate laboratory measures into network analysis can prove challenging as few experimental psychopathology studies have more than 30 subjects per group. Fortunately, statisticians have devised procedures that render tractable such high-dimensionality problems (Friedman et al., 2008). Yet uncertainty remains about the optimal way to estimate networks comprising cognitive, behavioral, and biological processes other than assessment of self-reported symptoms. Indeed, such studies are rare (Heeren and McNally, 2016; Hoorelbeke et al., 2016).

Author Contributions

AH had the initial ideas and wrote the first draft of the manuscript. All authors then revised the manuscript critically and contributed to and have approved the final manuscript.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This work was supported by a postdoctoral fellowship from the Helaers Foundation for Medical Research; the Belgian Foundation for Vocation (≪ Vocatio ≫); and the WBI World Excellence Grant—BioWin: The Competitive Cluster in Health and Life Sciences of Wallonia [grant number: sub/2015/228106243177], all awarded to AH. These foundations did not exert any editorial influence over this article.

References

Barabási, A.-L. (2012). The network takeover. Nat. Phys. 8, 14–16. doi: 10.1038/nphys2188

CrossRef Full Text | Google Scholar

Borsboom, D. (in press). A network theory of mental disorders. World Psychiatry.

Borsboom, D., and Cramer, A. O. (2013). Network analysis: an integrative approach to the structure of psychopathology. Annu. Rev. Clin. Psychol. 9, 91–121. doi: 10.1146/annurev-clinpsy-050212-185608

PubMed Abstract | CrossRef Full Text

Epskamp, S., Borsboom, D., and Fried, E. I. (2016b). Estimating psychological networks and their accuracy: a tutorial paper. ArXiv Preprint, ID 1604.08462, 1–25.

Google Scholar

Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., and Borsboom, D. (2012). Qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18. doi: 10.18637/jss.v048.i04

CrossRef Full Text | Google Scholar

Epskamp, S., Waldorp, L. J., Mõttus, R., and Borsboom, D. (2016a). Discovering psychological dynamics in time-series data. ArXiv Preprint ID 1609.04156, 1–31.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441. doi: 10.1093/biostatistics/kxm045

PubMed Abstract | CrossRef Full Text | Google Scholar

Heeren, A., and McNally, R. J. (2016). An integrative network approach to social anxiety disorder: the complex dynamic interplay among attentional bias for threat, attentional control, and symptoms. J. Anxiety Disord. 42, 95–104. doi: 10.1016/j.janxdis.2016.06.009

PubMed Abstract | CrossRef Full Text | Google Scholar

Hoorelbeke, K., Marchetti, I., De Schryver, M., and Koster, E. H. (2016). The interplay between cognitive risk and resilience factors in remitted depression: a network analysis. J. Affect. Disord. 195, 96–104. doi: 10.1016/j.jad.2016.02.001

PubMed Abstract | CrossRef Full Text | Google Scholar

McNally, R. J. (2016). Can network analysis transform psychopathology? Behav. Res. Ther., 86, 95–104. doi: 10.1016/j.brat.2016.06.006

PubMed Abstract | CrossRef Full Text | Google Scholar

McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M., and Borsboom, D. (2015). Mental disorders as causal systems: a network approach to posttraumatic stress disorder. Clin. Psychol. Sci., 3, 836–849. doi: 10.1177/2167702614553230

CrossRef Full Text

van Borkulo, C. D., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Waldorp, L. J., and Schoevers, R. A. (2015). Association of symptom network structure with the course of longitudinal depression. JAMA Psychiatry 72, 1219. doi: 10.1001/jamapsychiatry.2015.2079

PubMed Abstract | CrossRef Full Text | Google Scholar

Wong, Q. J. J., and Rapee, R. M. (2016). The aetiology and maintenance of social anxiety disorder: a synthesis of complimentary theoretical models and formulation of a new integrated model. J. Affect. Disord. 203, 84–100. doi: 10.1016/j.jad.2016.05.069

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: social anxiety disorder, computational social science, network analysis, complexity, graph theory, etiological factors, maintenance factors, experimental psychopathology

Citation: Heeren A and McNally RJ (2016) A Call for Complexity in the Study of Social Anxiety Disorder. Commentary: The aetiology and maintenance of social anxiety disorder: A synthesis of complementary theoretical models and formulation of a new integrated model. Front. Psychol. 7:1963. doi: 10.3389/fpsyg.2016.01963

Received: 17 November 2016; Accepted: 01 December 2016;
Published: 20 December 2016.

Edited by:

Amitai Abramovitch, Texas State University, USA

Reviewed by:

Dean McKay, Fordham University, USA
Jonathan S. Abramowitz, University of North Carolina, USA

Copyright © 2016 Heeren and McNally. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Alexandre Heeren, alexandreheeren@fas.harvard.edu; heeren.alexandre@gmail.com

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.