The Third Wave of Biological Psychiatry
A commentary on
The third wave of biological psychiatry
by Walter, H. (2013). Front. Psychol. 4:582. doi: 10.3389/fpsyg.2013.00582
In 1998, Eric Kandel wrote in his intriguing paper titled “A new intellectual framework for psychiatry” (Kandel, 1998) that “the unique domain which psychiatry occupies within academic medicine, the analysis of the interaction between social and biological determinants of behavior, can best be studied by also having a full understanding of the biological components of behavior.” Fifteen years later, much like surfers who continue a frustrated and longing pursuit for the next “big one” (Cowan et al., 2000; Kandel, 2006), we are, according to Henrik Walter, in the midst of the third wave of biological psychiatry (Walter, 2013). Because a wave is, in a physical sense, a disturbance that propagates through space and time while transferring energy, there are at least three reoccurring “thermodynamic sinks” that I would like to also emphasize with Walter to ultimately better understand the complexity of the human brain in action (Bassett, 2011).
First is the rediscovery of the coequal contributions of emotions and affects toward normal brain functioning (Damasio, 2003; Tsuchiya and Adolphs, 2007). After Michael Gazzaniga and George Miller “invented” “cognitive neuroscience” in the late 1980s (Zorumski and Rubin, 2011), the predominance of a cognition-centered view of “higher” (and perhaps as one facet: more noble?) brain functions was able to again delay necessary and not so new “insults” to our species and misdirect (in its top-down-view of brain functioning) the conceptualization and treatment of mental disorders (Cromwell and Panksepp, 2011; Almada et al., 2013). Neurobiology helps us recalibrate the human wishful thinking we had come to appreciate regarding the “higher” and “lower” of the “conditio humana” imprinted in our (neuro)physiology. As the world divides into facts, there is in fact no such hierarchy imprinted in our brains. Rather, the brain seems to favor “dynamic coalitions of networks of brain areas with a high degree of connectivity,” and these networks - or the connectome - should not be conceptualized as being specifically affective or cognitive (Pessoa, 2008).
Second is the rediscovery of the body in biological psychiatry. Walter mentions the “4Es” (embodiment, embeddedness, enactivism, extended cognition) and the challenge of so-called “situatedness” (Walter, 2013). However, the very first step toward valuing the operant inter-wovenness of mind and body might be a simpler one. Interestingly of ectodermal origin, neural tissue emerged enabling motor control in an evolutionary beneficial way. The brain originates in relation to a body that again, in relation to the outer world, actively moves – and, not least, gained the ability to interact with other bodies. Sensory information about the “situation,” the re-flective information involved in reflexes, is primarily able to close the loop and help coordinate movement. If Antonio R. Damasio is right, there is a need for emotions before we can feel anything, and these emotions are intimately connected with “more or less the complex reactions the body has to certain stimuli” (Damsio, 2005). These so-called “somatic markers” (Damasio, 1996) apparently make us capable of making predominantly beneficial decisions for self-preservation and the (we have to admit: biologically sexual) preservation of our species. It is designative that the brain is the “unmoved mover.” However, changes are also reflected in the brain itself if the “motor-sensory” connections to the body are disturbed, e.g., in paraplegia (Wiens, 2005; Lenggenhager et al., 2012). The fantasy of an ever-dreaming, monolithic (but nonetheless self-conscious) “brain in a vat” that could reasonably think (or meaningfully simulate) about “what is it like to be a bat” (Nagel, 1974) currently suffers from not only solipsistic but also neurobiological-Darwinistic (so to say “inborn”) pitfalls. In this manifold context, it is interesting that today's “modern or third wave” of psychiatry is more willing to pay increased attention to enigmatic somatic symptom disorders (other than at first glance mere “brain disorders” such as schizophrenia, depression, addiction, and dementia) and attempts to incorporate the body and its imprinted neural representation into a genuine, more holistic understanding of the field. One could interpret it as a new esteem of anciently quirky psychosomatics in biological psychiatry that overcomes its centro-centric monodimensionality.
Third is the rediscovery of the importance of “being in relation” for reasonable neural functioning, especially in terms of social relationships for the human brain. From birth until death, human mammals need the “significant other(s),” and it is perhaps the most integrating framework covering cognitive and affective neurosciences that will give rise to emerging social neurosciences (Eisenberger and Cole, 2012; Singer, 2012). Newly emerging imaging techniques, such as hyperscanning (Babiloni and Astolfi, 2012), i.e., the simultaneous recording of brain activity of different subjects that allows “the study of inter-brain correlations between the cerebral activity of a group of interacting subjects as a unique system” (Babiloni and Astolfi, 2012), will help us understand the brain and perhaps pave the way to a central second-person neuroscience (Schilbach et al., 2013). Against this background, and only as one important example, empathy and the question of its quality and quantity in men have gained more and more attention in modern neuroscience (Gonzalez-Liencres et al., 2013). Psychotherapy and its proven impact on mental health (Etkin et al., 2005), before any technical question, fundamentally relies on the quality of the relation between two human beings (like patient and therapist) (Ardito and Rabellino, 2011). One could, again, interpret this rediscovery as the new esteem of anciently subordinate psychotherapy in biological psychiatry.
Finally, after three waves, a fourth wave seems inevitable. I would venture to predict that this “new wave” will belong to the computational neurosciences (Wen et al., 2011; Poldrack et al., 2012) and arise from the background of information integration theory (Tononi, 2005). The Human Brain Project (Markram, 2012) which was awarded one of the European Union's Flagship grants in 2013, worth more than €1 billion ($1.35 billion) over the next ten years, aims for the first time to tie or link up all knowledge of and to simulate the complete human brain from the molecule to the cortex on supercomputers to better understand how it functions (or even malfunctions), is ultimately the first step into a new era of real cooperativeness among neuroscientists and brains (Markram, 2013). Unfortunately, largely without “third wave” psychiatry. Just as affect and cognition, body and soul, the body-bound brain and the brain of my conspecific, and psychiatry and psychosomatics grow together, entities that belong together grow together. We have the opportunity to see the emergence of a new, non-reductionist science of fractal brains, as we examine mental orders and disorders differently, in a “brainy way,” with more cooperation and integration than ever before. In one word, in accordance with Henry Markram (Kandel et al., 2013): exciting!
References
Almada, L. F., Pereira, A. Jr., and Carrara-Augustenborg, C. (2013). What affective neuroscience means for science of consciousness. Mens Sana Monogr. 11, 253–273. doi: 10.4103/0973-1229.100409
Ardito, R. B., and Rabellino, D. (2011). Therapeutic alliance and outcome of psychotherapy: historical excursus, measurements, and prospects for research. Front. Psychol. 2:270. doi: 10.3389/fpsyg.2011.00270
Babiloni, F., and Astolfi, L. (2012). Social neuroscience and hyperscanning techniques: past, present and future. Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2012.07.006. [Epub ahead of print].
Bassett, D. S. (2011). Gazzaniga MS. Understanding complexity in the human brain. Trends Cogn. Sci. 15, 200–209. doi: 10.1016/j.tics.2011.03.006
Cowan, W. M., Harter, D. H., and Kandel, E. R. (2000). The emergence of modern neuroscience: some implications for neurology and psychiatry. Annu. Rev. Neurosci. 23, 343–391. doi: 10.1146/annurev.neuro.23.1.343
Cromwell, H. C., and Panksepp, J. (2011). Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term “cognition” and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neurosci. Biobehav. Rev. 35, 2026–2035. doi: 10.1016/j.neubiorev.2011.02.008
Damasio, A. (2003). Feelings of emotion and the self. Ann. N. Y. Acad. Sci. 1001, 253–261. doi: 10.1196/annals.1279.014
Damasio, A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1413–1420. doi: 10.1098/rstb.1996.0125
Eisenberger, N. I., and Cole, S. W. (2012). Social neuroscience and health: neurophysiological mechanisms linking social ties with physical health. Nat. Neurosci. 15, 669–674. doi: 10.1038/nn.3086
Etkin, A., Pittenger, C., Polan, H. J., and Kandel, E. R. (2005). Toward a neurobiology of psychotherapy: basic science and clinical applications. J. Neuropsychiatry Clin. Neurosci. 17, 145–158. doi: 10.1176/appi.neuropsych.17.2.145
Gonzalez-Liencres, C., Shamay-Tsoory, S. G., and Brune, M. (2013). Towards a neuroscience of empathy: ontogeny, phylogeny, brain mechanisms, context and psychopathology. Neurosci. Biobehav. Rev. 37, 1537–1548. doi: 10.1016/j.neubiorev.2013.05.001
Kandel, E. (2006). Biology of the mind. Newsweek 147:47. Available online at: http://www.ncbi.nlm.nih.gov/pubmed/16579349
Kandel, E. R., Markram, H., Matthews, P. M., Yuste, R., and Koch, C. (2013). Neuroscience thinks big (and collaboratively). Nat. Rev. Neurosci. 14, 659–664. doi: 10.1038/nrn3578
Lenggenhager, B., Pazzaglia, M., Scivoletto, G., Molinari, M., and Aglioti, S. M. (2012). The sense of the body in individuals with spinal cord injury. PLoS ONE 7:e50757. doi: 10.1371/journal.pone.0050757
Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55. doi: 10.1038/scientificamerican0612-50
Markram, H. (2013). Seven challenges for neuroscience. Funct. Neurol. 28, 145–151. doi: 10.11138/FNeur/2013.28.3.144
Pessoa, L. (2008). On the relationship between emotion and cognition. Nat. Rev. Neurosci. 9, 148–158. doi: 10.1038/nrn2317
Poldrack, R. A., Mumford, J. A., Schonberg, T., Kalar, D., Barman, B., and Yarkoni, T. (2012). Discovering relations between mind, brain, and mental disorders using topic mapping. PLoS Comput. Biol. 8:e1002707. doi: 10.1371/journal.pcbi.1002707
Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., et al. (2013). Toward a second-person neuroscience. Behav. Brain Sci. 36, 393–414. doi: 10.1017/S0140525X12000660
Singer, T. (2012). The past, present and future of social neuroscience: a European perspective. Neuroimage 61, 437–449. doi: 10.1016/j.neuroimage.2012.01.109
Tononi, G. (2005). Consciousness, information integration, and the brain. Prog. Brain Res. 150, 109–126. doi: 10.1016/S0079-6123(05)50009-8
Tsuchiya, N., and Adolphs, R. (2007). Emotion and consciousness. Trends Cogn. Sci. 11, 158–167. doi: 10.1016/j.tics.2007.01.005
Walter, H. (2013). The third wave of biological psychiatry. Front. Psychol. 4:582. doi: 10.3389/fpsyg.2013.00582
Wen, W., He, Y., and Sachdev, P. (2011). Structural brain networks and neuropsychiatric disorders. Curr. Opin. Psychiatry 24, 219–225. doi: 10.1097/YCO.0b013e32834591f8
Wiens, S. (2005). Interoception in emotional experience. Curr. Opin. Neurol. 18, 442–447. doi: 10.1097/01.wco.0000168079.92106.99
Keywords: mental disorders, neuroimaging, psychosomatic, cognitive neuroscience, affective neuroscience, social neuroscience
Citation: Noll-Hussong M (2014) Of waves and troughs. Front. Psychol. 5:197. doi: 10.3389/fpsyg.2014.00197
Received: 30 January 2014; Accepted: 20 February 2014;
Published online: 06 March 2014.
Edited by:
Marco Stier, University of Muenster, GermanyReviewed by:
Sebastian Muders, University of Zurich, SwitzerlandCopyright © 2014 Noll-Hussong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
*Correspondence: minohu@gmx.net