Skip to main content

REVIEW article

Front. Plant Sci.
Sec. Plant Genetics, Epigenetics and Chromosome Biology
Volume 15 - 2024 | doi: 10.3389/fpls.2024.1467236

Plant Kinetochore Complex: Composition, Function, and Regulation

Provisionally accepted
  • Shenzhen University, Shenzhen, China

The final, formatted version of the article will be published soon.

    The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.

    Keywords: Centromere, Kinetochore complex, CENH3, CENP-C, cenDNAs, cenRNAs, plant artificial chromosomes

    Received: 19 Jul 2024; Accepted: 25 Sep 2024.

    Copyright: © 2024 Xie, Wang, Mo and Liang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Beixin Mo, Shenzhen University, Shenzhen, China
    Chao Liang, Shenzhen University, Shenzhen, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.