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The kinetochore complex, an important protein assembly situated on the

centromere, plays a pivotal role in chromosome segregation during cell

division. Like in animals and fungi, the plant kinetochore complex is important

for maintaining chromosome stability, regulating microtubule attachment,

executing error correction mechanisms, and participating in signaling pathways

to ensure accurate chromosome segregation. This review summarizes the

composition, function, and regulation of the plant kinetochore complex,

emphasizing the interactions of kinetochore proteins with centromeric DNAs

(cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric

histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-

A in mammals) in the generation of ploidy-variable plants and synthesis of plant

artificial chromosomes (PACs) are discussed. The review serves as a

comprehensive roadmap for researchers delving into plant kinetochore

exploration, highlighting the potential of kinetochore proteins in driving

technological innovations in synthetic genomics and plant biotechnology.
KEYWORDS

centromere, kinetochore complex, CENH3, CENP-C, cenDNAs, cenRNAs, plant
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1 Introduction

The centromere, a specific region located in the primary constriction of a chromosome,

plays a crucial role in cell division. It participates in connecting sister chromatids and facilitating

chromosome segregation during mitosis and meiosis (Sundararajan and Straight, 2022; Evatt

et al., 2024). According to the size and distribution, centromeres can be divided into four classes,

point centromere, holocentromere, monocentromere and metapolycentromere (Ekwall, 2007;

Oliveira and Torres, 2018; Plačková et al., 2021; Kuo et al., 2023). This review focuses on plant

monocentromeres, while other types of centromeres are beyond its scope. The kinetochore is a

giant protein complex assembled on the centromere of eukaryotes, with more than 100

structural and regulatory proteins involved in its assembly (McAinsh and Marston, 2022;

Ariyoshi and Fukagawa, 2023). Each chromosome contains two kinetochores on either side of
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the centromere during metaphase (Figure 1A). Electron micrograph

shows that the kinetochore is a disc-shaped structure including inner

and outer layers (Dawe et al., 2005). The inner part is intertwined with

the centromere, while the outer part is mainly used for spindle

microtubule attachment (Dawe et al., 2005; Cheeseman, 2014;

Monda and Cheeseman, 2018). The kinetochore complex is

structurally intricate, with various protein components having

extensive interactions. In addition to their mutual interactions, the

kinetochore proteins frequently bind to centromeric DNAs (cenDNAs)

and RNAs (cenRNAs) (Du et al., 2010; Sandmann et al., 2017;
Frontiers in Plant Science 02
Wlodzimierz et al., 2023; Fernandes et al., 2024). During cell

division, the kinetochore complex serves as an interface between

chromosomes and spindle microtubules (MTs), facilitating the

precise movement and segregation of chromosomes. This plays a

crucial role in signal transduction, monitoring the correct attachment

of chromosomes to spindleMTs as well as regulating the progression of

the cell cycle by shaping the structure and morphology of

chromosomes, thereby ensuring their proper alignment and

segregation (Cheeseman, 2014; Monda and Cheeseman, 2018; Cairo

and Lacefield, 2020). Similar to its counterparts in animals and fungi,
FIGURE 1

Schematic of the plant kinetochore complex. (A) Plant kinetochore region. The red and orange shading represent the inner kinetochore
components, while the yellow, green and blue shading refer to the outer kinetochore components. (B) Comparison of kinetochore composition in
plants, animals and fungi. Pol II, RNA Polymerase II; CCAN, constitutive centromere-association network; CENH3, centromeric histone H3 variant;
CENP-C, centromere protein C; KNL2, kinetochore null2; SAC, spindle assembly checkpoint; CPC, chromosome passenger complex; KNL1C,
kinetochore scaffold 1 complex; MIS12C, minichromosome instability 12 complex; NDC80C, nuclear division cycle 80 complex; cenDNAs,
centromeric DNAs; cenRNAs, centromeric RNAs; R-loop, a special chromosome structure that contains one strand of single-stranded DNA and
another strand comprising a DNA, RNA hybrid; sRNA, small RNA; lncRNA, long non-coding RNA; circRNA, circular RNA.
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the kinetochore complex in plant cells performs vital functions such as

maintaining the structural stability of chromosomes, regulating

microtubule attachment and dynamics, participating in error

correction mechanisms, as well as taking part in the regulation of

signaling pathways and checkpoint recognition (Kixmoeller et al., 2020;

Zhou et al., 2023). These functions collectively ensure the accuracy of

cytokinesis and the stable transmission of genetic information

(Cheeseman, 2014; Zhou et al., 2023).

In this review, the composition, function, and regulation of the

plant kinetochore complex are summarized, with details on the

interactions of the kinetochore proteins with cenDNAs and

cenRNAs. Additionally, the applications of the core kinetochore

protein CENH3, the centromeric histone H3 variant, in the

generation of ploidy-variable plants and the synthesis of plant

artificial chromosomes (PACs), mainly in Arabidopsis thaliana, are

described. This comprehensive review serves as a roadmap for

researchers embarking on the journey of plant kinetochore

exploration by systematically providing current knowledge of the

kinetochore complex, identifying research gaps, and proposing future

directions. The review aims to inspire innovative approaches that can

advance the field of plant kinetochore research, thereby guiding and

inspiring future inquiries in this crucial research area.
2 Composition and interaction
network of the kinetochore complex

The kinetochore complex consists of a variety of proteins,

including core kinetochore proteins and associated proteins that

interact and coordinate in orchestrating chromosome movement and

segregation processes (McAinsh and Marston, 2022). Based on the

position and functions, the core subunits of kinetochore are classified

into two main parts, namely the inner constitutive centromere-

association network (CCAN) and the outer KNL1 complex

(kinetochore scaffold 1 complex, KNL1C), MIS12 complex

(minichromosome instability 12 complex, MIS12C), and NDC80

complex (nuclear division cycle 80 complex, NDC80C) network

(KMN) (Figure 1, Table 1) (McKinley and Cheeseman, 2016; Pesenti

et al., 2016; Comai et al., 2017; Yatskevich et al., 2022; Zhou et al., 2023;

Yatskevich et al., 2024). The inner CCAN is located within the

centromeres throughout the cell cycle, while the outer KMN is

recruited to centromeres specifically during the M phase (mitotic

phase), when nuclear and cytoplasmic divisions occur, leading to the

production of two daughter cells (Hara and Fukagawa, 2017). The

inner CCAN mainly binds to CENH3 nucleosomes, while the outer

KMN connects directly to MTs, mediating the interaction between

MTs and the inner CCAN (Lermontova et al., 2013; Yatskevich et al.,

2023; Zhou et al., 2023; Deng et al., 2024a, 2024b). Additionally, the

kinetochore proteins also oversee the spindle assembly checkpoint

(SAC), assisting in the accurate alignment of chromosome and the

successful completion of mitosis (Lara-Gonzalez et al., 2021; Deng

et al., 2024a, 2024b). The loading and functioning of SAC on

kinetochores also depend on the chromosome passenger complex
Frontiers in Plant Science 03
TABLE 1 List of plant kinetochore proteinsa.

Name Homologs References

CENH3
AtCENH3,
ZmCENH3,
PpCENH3

(Lermontova et al., 2006, 2011;
Maruthachalam et al., 2011; Kozgunova et al.,
2019; Feng et al., 2020; Capitao et al., 2021)

CENP-C
AtCENP-C,
ZmCENP-C,
PpCENP-C

(Ogura et al., 2004; Zheng et al., 2017;
Kozgunova et al., 2019; Zhou et al., 2023)

CENP-S
AtCENP-S
(MHF1),
PpCENP-S

(Dangel et al., 2014; Kozgunova et al., 2019)

CENP-X
AtCENP-X
(MHF2),

PpCENP-X
(Dangel et al., 2014; Kozgunova et al., 2019)

CENP-O PpCENP-O (Kozgunova et al., 2019)

KNL2
aKNL2, bKNL2,
gKNL2, dKNL2

(Lermontova et al., 2013; Boudichevskaia
et al., 2019; Zuo et al., 2022)

KNL1
AtKNL1,
ZmKNL1,
PpKNL1

(Kozgunova et al., 2019; Su et al., 2021; Deng
et al., 2024a)

MIS12
AtMIS12,
ZmMIS12

(Sato et al., 2005; Li and Dawe, 2009)

NNF1 AtNNF1 (Allipra et al., 2022)

NDC80 ZmNDC80 (Du and Dawe, 2007)

NUF2 AtNUF2 (Li et al., 2021)

SPC24 AtMUN (Shin et al., 2018)

SPC25 AtSPC25 (Shin et al., 2018; Li et al., 2021)

MPS1
AtMPS1,
OsPRD2

(Jiang et al., 2009; Wang et al., 2023a)

BUB1
(BMF1)

ZmBUB1,
OsBRK1

(Wang et al., 2012; Su et al., 2017)

BUB3

AtBUB3.1,
AtBUB3.2,
AtBUB3.3,
ZmBUB3

(Su et al., 2017; Zhang et al., 2018, 2021;
Lermontova et al., 2008)

BUBR1
(MAD3)

AtMAD3.1
(BMF2),

AtMAD3.2
(BMF2)

(Caillaud et al., 2009; Komaki and
Schnittger, 2016)

MAD1 AtMAD1 (Bao et al., 2014)

MAD2
AtMAD2,
ZmMAD2,
TaMAD2

(Yu et al., 1999; Caillaud et al., 2009; Bao
et al., 2014)

Aurora
AtAURORA1,
AtAURORA2,
AtAURORA3

(Demidov et al., 2005; Weimer et al., 2016;
Komaki et al., 2020; Deng et al., 2024c)

INCENP AtWYR (Kirioukhova et al., 2011; Komaki et al., 2020)

Borealin AtBORR (Kirioukhova et al., 2011; Komaki et al., 2020)

Survivin AtBORI2 (Komaki et al., 2020, 2022)
aAt, Arabidopsis thaliana; Os, Oryza sativa; Zm, Zea mays; Pp, Physcomitrella patens; Ta,
Triticum aestivum.
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(CPC) (Komaki et al., 2020; Zhou et al., 2023). In addition to

interacting with each other, kinetochore proteins often bind to

cenDNAs and cenRNAs (Du et al., 2010; Sandmann et al., 2017;

Wlodzimierz et al., 2023; Fernandes et al., 2024).
2.1 CENH3 protein and inner
kinetochore proteins

2.1.1 CENH3 protein
CENH3 protein is important for chromosome segregation, with

its proper deposition being a prerequisite for the correct assembly of

kinetochore components. The name of CENH3 is various in different

organisms, namely CENP-A in animals and fission yeast, Cse4 in

budding yeast, and CENH3 in plants and many protists (Talbert and

Henikoff, 2018). Interspersed with canonical H3, CENH3 forms

nucleosomes with cenDNAs at the centromere (Kixmoeller et al.,

2020). CENH3 is widely present in plants, with its function being

evolutionarily conserved across various species. Like conventional

H3, CENH3 has a N-terminal tail domain (protruding from the

nucleosome, serving as a target for post-translational modifications)

and a conserved C-terminal histone-fold domain (HFD) (Figures 2A,

B). The N-terminal of CENH3 exhibits high variability in the length

and sequence of amino acids (Raipuria et al., 2023), while the C-

terminal HFD is conserved in most eukaryotes. Though mitotic

chromosome segregation is supported by either the CENH3 N-

terminal or the histone H3 N-terminal, normal functioning of

CENH3 requires its N-terminal (Ravi et al., 2010). In Arabidopsis,

the C-terminal of CENH3 is sufficient for the loading of CENH3

duringmitosis (Lermontova et al., 2006), but meiotic loading requires

both the C and N-terminals (Lermontova et al., 2011;

Maruthachalam et al., 2011). The C-terminal HFD of Arabidopsis

CENH3 can be loaded onto the centromeres in the absence of its N-

terminal during mitosis (Lermontova et al., 2006). However, N-

terminal truncated CENH3 cannot be loaded onto the centromeres

of the meiotic nucleus, leading to chromosome lag and micronucleus

formation, thereby reducing plant fertility (Lermontova et al., 2011).

In contrast, heterologous CENH3 from some grass species may be

able to localize at centromeres in the presence of the native

Arabidopsis CENH3, but are not functionally competent in the

absence of native CENH3, indicating that the localization of

CENH3 is not necessarily associated with its centromere function

(Ravi et al., 2010). The C-terminal tail of maize (Zea mays) CENH3

could bind to histone H4, resulting in the formation of stable

nucleosomes (Feng et al., 2020). Using RNA interference (RNAi) to

knockdown CENH3 in Arabidopsis resulted in abnormal mitosis,

ultimately leading to dwarf plants (Lermontova et al., 2011). Capitao

et al. showed that Arabidopsis plants, partially deficient in the RNA

decay factor - suppressor with morphogenetic effects on genitalia 7

(SMG7), failed to exit meiosis, causing diminished fertility. CENH3

mutation in SMG7-deficient plants promoted the exit of meiosis and

the restoration of fertility (Capitao et al., 2021).

2.1.2 Inner kinetochore proteins
In most eukaryotes, CENH3 physically interacts with the inner

CCAN (Cortes-Silva et al., 2020; Fellmeth and McKim, 2020; Carty
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et al., 2021). Based on the functions, spatial location, and

recruitment relationship, the 16 subunits of vertebrate inner

CCAN are divided into several subcomplexes, namely CENP-C

(centromere protein C), CENP-H/I/K/M, CENP-L/N, CENP-T/W/

S/X, and CENP-O/P/Q/R/U (Pesenti et al., 2016). Among these,

CENP-C serves as a basic kinetochore protein that binds to CENH3

nucleosomes, DNAs, and RNAs (Kerstin et al., 2015; Walstein et al.,

2021; Ariyoshi and Fukagawa, 2023). It occupies a pivotal position

in the recruitment of other kinetochore proteins, with a conserved

CENP-C motif and ubiquitous interactions with other kinetochore

proteins (Figures 2C, D). In humans (Homo sapiens), the N-

terminal of CENP-C interacts with the MIS12C of the outer

KMN, bridging the inner CCAN and the outer KNM (Kerstin

et al., 2015; Ariyoshi and Fukagawa, 2023; Hara et al., 2023). The

middle part of CENP-C interacts with the other components of

CCAN (Kerstin et al., 2015; Ariyoshi and Fukagawa, 2023; Hara

et al., 2023), while the C-terminal of CENP-C harbors a cupin

domain that facilitates protein dimerization, CENP-C’s centromere

localization, and interaction with CENP-A. CENP-C is the only

kinetochore component in plants homologous to vertebrate CCAN

(Zhou et al., 2023), which was found in Arabidopsis (Ogura et al.,

2004), maize (Zheng et al., 2017), and moss (Physcomitrella patens)

(Kozgunova et al., 2019). In addition, the moss possesses CENP-S,

CENP-X, and CENP-O, but these proteins are not localized to

kinetochores (Kozgunova et al., 2019). Despite the absence of

kinetochore enrichment in moss CENP-X, RNAi-mediated

knockdown of CENP-X resulted in chromosome missegregation

and cytokinesis failure, which could be rescued by ectopic

expression of CENP-X (Kozgunova et al., 2019). This proves that

CENP-X is essential for chromosome segregation and cell division

(Kozgunova et al., 2019). Like humans, plant CENP-S (MHF1) and

CENP-X (MHF2) interact with Fanconi anaemia complementation

group M (FANCM) by forming a DNA remodeling complex,

thereby participating in the damage-dependent DNA binding of

FANCM (Dangel et al., 2014; Singh et al., 2023). Besides, in chicken

DT40 cells, they also play important roles in the establishment of

kinetochore functions to ensure proper chromosome segregation

(Amano et al., 2009; Nishino et al., 2012). Though plant CENP-S

and CENP-X are related to DNA repair and homologous

recombination (Dangel et al., 2014; Singh et al., 2023), their

specific roles in kinetochore assembly remain elusive.

Kinetochore null2 (KNL2, also known as Mis18 binding protein 1,

M18BP1 in animals) is another important inner kinetochore protein

(Subramanian et al., 2014; Hori et al., 2017; Sandmann et al., 2017; Zuo

et al., 2022; London et al., 2023). Currently, all known KNL2 proteins

harbor a conserved domain called Swi3-Ada2-NCoR-TFIIIB-

associated (SANTA). However, in Xenopus laevis, SANTA was found

unessential for the interaction between M18BP1 and CENP-A

nucleosomes, whereas M18BP1 was observed to bind to CENP-C

through SANTA (French and Straight, 2019). Moreover, Arabidopsis

KNL2 was found to target centromeres and interact with DNA

independently of SANTA (Lermontova et al., 2013; Sandmann et al.,

2017). Thus, the precise role of SANTA in KNL2 remains enigmatic.

Further, the CENPC-like (CENPC-k) conservedmotif is also present in

the C-terminal region of eukaryotic KNL2 homologs, including those

of X. laevis (French et al., 2017), chicken (Hori et al., 2017), and
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Arabidopsis (Sandmann et al., 2017; Zuo et al., 2022). In plants, the

KNL2 gene is divided into two branches, namelyaKNL2 and bKNL2 in
eudicots, and gKNL2 and dKNL2 in grasses. Only aKNL2 and gKNL2
were found to have CENPC-k (Zuo et al., 2022). Arabidopsis has both

aKNL2 and bKNL2, while maize has only dKNL2 (Zuo et al., 2022).

Mutations in Arabidopsis KNL2 result in mitotic and meiotic defects

and reduced DNA methylation, resulting in slow development and

impaired reproductive capability (Boudichevskaia et al., 2019).
Frontiers in Plant Science 05
2.1.3 Interactions among CENH3, CENP-C, and
KNL2 in plants

Plant centromere recognition and functions are epigenetically

defined by CENH3, serving as the basis of kinetochore formation

(Naish and Henderson, 2024). CENH3 combines with double-

stranded DNA to form CENH3 nucleosomes, achieved through

local high concentrations of CENH3 (McKinley and Cheeseman,

2016). Chromosome segregation leads to the halving of parental
FIGURE 2

Structural model of CENH3 and CENP-C. (A) Conserved motif of CENH3 in Arabidopsis thaliana, Zea mays, Schizosaccharomyces pombe and Homo
sapiens by InterPro (https://www.ebi.ac.uk/interpro/) and IBS software. (B)Multiple protein sequence alignment of CENH3 histone fold domain (HFD) in
A. thaliana, Z. mays, S. pombe and H. sapiens was generated by the T-COFFEE program. The color code indicates the similarity between the protein
sequences as indicated. (C) Conserved motif, DNA binding domain and RNA binding domain of CENP-C in A. thaliana, Z. mays, S. pombe and H. sapiens
by InterPro website and IBS software. (D) Logos representation of an alignment of the CENP-C motif in A. thaliana, Z. mays, S. pombe and H. sapiens
through MEME (https://meme-suite.org/meme/tools/meme). Data used were from the references (Yang et al., 1996; Sugimoto et al., 1997; Talbert et al.,
2004; Wong et al., 2007; Du et al., 2010; Wang et al., 2023b).
frontiersin.org

https://www.ebi.ac.uk/interpro/
https://meme-suite.org/meme/tools/meme
https://doi.org/10.3389/fpls.2024.1467236
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xie et al. 10.3389/fpls.2024.1467236
histones, counterbalanced by the loading of new histones. In plants,

the loading of CENH3 onto centromeres occurs during G2 and/or

prophase (Lermontova et al., 2006), mainly dependent on the

centromere-licensing factors, CENP-C and KNL2, and the

chaperone molecule NASP/Sim3 (Le Goff et al., 2019; Stirpe and

Heun, 2023). Moreover, g-tubulin complex protein 3-interacting

proteins (GIPs), GIP1 and GIP2, are required for CENH3 loading

and/or maintenance (Batzenschlager et al., 2015).

The conserved CENP-C motif plays an important role in the

centromere localization of CENP-C and its interaction with

CENH3 in animals and fungi (Talbert et al., 2004; Nagpal et al.,

2015; Ariyoshi and Fukagawa, 2023). Moreover, the CENP-C motif

is the only reported conserved domain in plants to be homologous

with CENP-C in animals and fungi (Talbert et al., 2004), suggesting

that it may have similar functions in plant. Arabidopsis (a)KNL2,
on the other hand, is responsible for centromere recognition and

deposition of new CENH3, competing with CENP-C in this process

(Lermontova et al., 2013; French et al., 2017). Arabidopsis (a)KNL2
could be co-localized with CENH3 at all stages of the cell cycle

except metaphase and mid-anaphase, binding to CENH3

nucleosomes through its C-terminal CENPC-k conserved domain

to participate in centromere recognition and CENH3 localization

(Sandmann et al., 2017). This is similar to fission yeast, but different

from humans where CENH3 is only present transiently in

centromeres after mitotic exit (Hayashi et al., 2004; Fujita et al.,

2007; Maddox et al., 2007). However, in Arabidopsis and Nicotiana

benthamiana, although the centromere localization of CENP-C and

(a)KNL2 is dependent on the CENPC/CENPC-k motifs, the

CENPC and CENPC-k motifs alone are not sufficient (Yalagapati

et al., 2024). The knockout of Arabidopsis (a)KNL2 triggers a

decrease in CENH3 transcript levels, controlling the epigenetic

regulation of CENH3 assembly (Lermontova et al., 2013).

However, the knockout of (a)KNL2 reduced CENH3 assembly on

centromeres but it does not abolish the centromeric localization of

CENH3 (Lermontova et al., 2013). Compared to aKNL2 with

CENPC-k, in eudicots, the centromere localization of bKNL2,
which lacks the CENPC-k domain, may be achieved through

binding to CENP-C by its SANTA domain as revealed in studies

on X. laevis (French et al., 2017), or by its N-terminal conserved

domain located upstream of the SANTA domain as revealed in

studies on humans (Stellfox et al., 2016), or by a combination of

these two regions. Yadala et al. proposed that the centromere

localization of Arabidopsis bKNL2 requires its SANTA domain

and the C-terminal motif-III, and depends on aKNL2 in a tissue-

dependent manner (Yadala et al., 2024).

NASP/Sim3, an Arabidopsis ortholog of the mammalian nuclear

autoantigenic sperm protein (NASP) and Schizosaccharomyces

pombe histone chaperone Sim3, was demonstrated to bind to

CENH3, affecting its abundance at centromeres (Le Goff et al.,

2019). Additionally, Arabidopsis GIPs could form a protein

complex with CENH3 and is involved in CENH3 stabilization and

centromere cohesion (Batzenschlager et al., 2015). The gip1gip2

knockdown mutant leads to a decreased CENH3 level and

impaired recruitment of CENP-C at centromeres, despite a higher

level of KNL2 present at both centromeric and ectopic sites

(Batzenschlager et al., 2015).
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2.2 Outer kinetochore proteins

The outer KMN physically connects the centromere and the

inner CCAN to MTs, mediating the MTs-CCAN interaction for

chromosome localization and segregation. The outer KMN begins

to accumulate in kinetochores during prophase, remains there

during interphase (Espeut et al., 2012; Deng et al., 2024a). KMN

supports chromosome movement and segregation in addition to

functioning as a platform for recruiting other regulatory proteins

(London and Biggins, 2014; Hara and Fukagawa, 2017). The outer

KMN consists of the KNL1 complex (KNL1C), MIS12 complex

(MIS12C) and NDC80 complex (NDC80C) (Li and Dawe, 2009; Su

et al., 2021; Neumann et al., 2023; Polley et al., 2023; Kim et al.,

2024; Oliveira et al., 2024; Polley et al., 2024). Due to the similar

rapid evolution of other kinetochore proteins, such as CENH3 and

CENP-C (Talbert et al., 2004; Pontremoli et al., 2021), only a few

KMN proteins homologous to mammals and yeast have been

identified in plants.

KNL1C is comprised of KNL1 and ZWINT (ZW10 interactor),

but only KNL1 has been identified and functionally characterized in

plants (Su et al., 2021; Deng et al., 2024a). Two distinct functional

domains - the coiled-coil domain and the RING finger, WD repeat,

DEAD-like helicases domain (RWD) - connect plant KNL1 with its

animal orthologs (van Hooff et al., 2017; Kozgunova et al., 2019; Su

et al., 2021). Plant KNL1 is involved in the segregation of sister

chromatids during mitosis (Kozgunova et al., 2019; Su et al., 2021;

Deng et al., 2024a). The loss of function of KNL1 in maize led to

abnormal chromosome behavior during early endosperm

development, causing kernel defects (Su et al., 2021). KNL1

mutation in Arabidopsis resulted in seed abortion, with the

mutant plants being extremely short, forming dark/purple

rosettes with deformities, and leaf trichomes with an increase in

the number of branches (Deng et al., 2024a). While the homolog of

human ZWINT has not yet been reported in plants, it is known to

correct misattachment between kinetochores and MTs to maintain

genome stability, in addition to serving as a biomarker for tumor

research (Lin et al., 2021).

The members of MIS12C include MIS12, necessary for nuclear

function 1 (NNF1, also known as polyaminemodulated factor 1, PMF1

in humans), dosage suppressor of NNF1 (DSN1), and non-specific

lethal 1 (NSL1), of which MIS12 and NNF1 were found in plants (Sato

et al., 2005; Li and Dawe, 2009; Allipra et al., 2022). ArabidopsisMIS12

was found to interact with NNF1, localizing to the kinetochores

(Allipra et al., 2022). In Arabidopsis, MIS12 mutation resulted in

embryo lethality and slow growth (Sato et al., 2005). Embryos and

syncytial endosperms of Arabidopsis NNF1mutants harbored multiple

nucleoli of varying sizes (Allipra et al., 2022). Further, Arabidopsis

NNF1 was also found to affect polyamine and gibberellic acid (GA)

metabolism (Allipra et al., 2022).

NDC80C is composed of NDC80, NUF2 (nuclear filament-

containing protein 2), spindle pole component 24 (SPC24), and

spindle pole components 25 (SPC25). All four members have been

identified in plants (Du and Dawe, 2007; Shin et al., 2018; Li et al.,

2021). In human, MIS12 binds to NDC80C which in turn directly

interacts with MTs. NDC80 directly interacts with MIS12C,

facilitating its indirect interaction with CENH3 and CENP-C
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(Cheeseman and Desai, 2008). Similar to animals and fungi, maize

NDC80 was found to be stably maintained at centromeres during

cell division (Du and Dawe, 2007). In Arabidopsis, NUF2, along

with meristem unstructured (MUN or SPC24), and SPC25 have

been found to co-localize with CENH3 (Shin et al., 2018; Li et al.,

2021). Furthermore, Marimuthu et al. demonstrated that

Arabidopsis NUF2 and CENPC colocalize with CENH3, although

they did not investigate their physical interaction (Marimuthu et al.,

2021). Plant NUF2 regulates spindle microtubule organization and

chromosome segregation during mitosis (Li et al., 2021). Mutations

in Arabidopsis NUF2 caused severe mitotic defects in embryos,

endosperm, and even seedlings, manifested as seed abortion and

seedling growth cessation (Li et al., 2021). MUN affects plant

development through cell division (Shin et al., 2018). Arabidopsis

MUN mutant plants exhibited unstructured shoot apical meristem

(SAM) and ectopic development of SAM (Shin et al., 2018). In

addition, Arabidopsis SPC25 was found to co-localize with CENH3

and MTs at different stages of mitosis, suggesting that SPC25 may

perform a similar function to NUF2 (Li et al., 2021).
2.3 Spindle assembly checkpoint proteins
and chromosome passenger
complex proteins

2.3.1 Spindle assembly checkpoint proteins
SAC signaling is a conserved regulatory mechanism in

centromeres that controls cell cycle and genome stability (Lara-

Gonzalez et al., 2021; McAinsh and Kops, 2023). The core SAC

proteins are composed of monopolar spindle 1 (MPS1), budding

uninhibited by benomyl (BUB, including BUB1 and BUB3), BUB1-

related protein 1 (BUBR1, also called MAD3), and mitotic arrest

deficient (MAD, including MAD1 and MAD2) (Lara-Gonzalez

et al., 2021; Zhou et al., 2022; Deng et al., 2024b). In Arabidopsis,

MPS1 has been found to regulate the double-strand break (DSB)

during meiosis and is a key factor in determining spindle bipolarity

(Jiang et al., 2009). Conversely, the homolog of MPS1 in rice (Oryza

sativa) was found to be involved only in DSB and not in spindle

assembly (Wang et al., 2023a), suggesting that MPS1 may have

multiple functions in different plants. Maize BUB1/BMF1 was

found to mediate H2AThr133 phosphorylation within CENH3

nucleosomes (Su et al., 2017) and BUB1-related kinase BRK1 in

rice ensured proper tension between homologous kinetochores

during meiosis metaphase (Wang et al., 2012). MAD3.1/BMF2

and MAD3.2/BMF3 are the two MAD3/BUBR1 homologs in

Arabidopsis (Komaki and Schnittger, 2016). Plant BUB3 contains

WD40 repeats, but all BUB1/MAD3 family proteins (BMF1/2/3)

lack the canonical Gle-binding site (GLEBS) domain that interacts

with BUB3 (Komaki and Schnittger, 2016). Arabidopsis BUB3 has

three homologs, BUB3.1, BUB3.2, and BUB3.3 (Lermontova et al.,

2008). During cell division, Arabidopsis BUB3.1 and BUB3.2 were

reported to regulate microtubule reorganization signal and

phragmoplast development (Zhang et al., 2018, 2021). Plant

BMF2 localizes to kinetochores under microtubule-destabilizing

conditions to directly interact with BMF3 in kinetochores

(Caillaud et al., 2009). In animals and yeast, MAD1 is localized
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predominantly at unattached kinetochores, recruiting MAD2 to

form a MAD1–MAD2 complex (Bao et al., 2014). However, the

kinetochore localization of plant MAD1 is yet to be reported.

Nevertheless, plant MAD2 homologs were reported to strongly

accumulate in kinetochores under microtubule-destabilizing

conditions (Caillaud et al., 2009). Arabidopsis MAD1 was

reported to regulate endopolyploidization and flowering time,

indicating that MAD1 regulates cell cycle control during

reproductive transition (Bao et al., 2014).

Conserved from yeast to humans, Arabidopsis BUB3.1, MAD2,

and MAD3 were found to physically interact with each other

(Caillaud et al., 2009). Arabidopsis KNL1 interacts with BUB3.3

and BMF3 through the eudicot-specific-domain (ESD), regulating

the localization of BUB3.3 and BMF3 in kinetochores and affecting

their functions in SAC signaling (Deng et al., 2024a). The absence of

BUB3.3 and BMF3 from the kinetochore results in inadequate SAC

signaling, halting mitotic cells from progressing to anaphase due to

the lack of proper chromosomal alignment (Deng et al., 2024a). Su

et al. found that a 145-amino-acid region in the middle of maize

KNL1 interacted with the SAC component BMF1/2, but not with

BMF3 (Su et al., 2021), demonstrating that the interaction patterns

between KNL1 and SAC proteins could be various in different plant

species. Like in vertebrates, this region of KNL1 could form a helical

conformation alongside a hydrophobic interface of the

tetratricopeptide repeat (TPR) domain of BMF1/2 (Su et al., 2021).

2.3.2 Chromosome passenger complex proteins
The loading and functioning of SAC in kinetochores depend on

CPC, which comprises the core enzyme Aurora kinase and three

non-enzymatic kinases, namely inner centromere protein

(INCENP), Borealin, and Survivin (Komaki et al., 2020; Zhou

et al., 2023). Plant Aurora kinases are classified into a-Aurora
and b-Aurora, with higher plants possessing both types. For

example, AURORA1 and AURORA2 in Arabidopsis and rice

belong to a-Aurora, while AURORA3 belongs to b-Aurora
(Demidov et al., 2005; Weimer et al., 2016). However, lower

plants, such as moss and Marsilea vestita, contain only a-Aurora
(Demidov et al., 2005). In plants, a-Aurora is found in spindle MTs

during mitosis, while b-Aurora is found in kinetochores. Their

characteristics and functions differ from those of Aurora A, Aurora

B, and Aurora C in mammals (Komaki et al., 2020). Deng et al.

reported that a-Aurora facilitated cytokinesis progression through

phosphorylation-dependent restriction of microtubule-associated

protein 65-3 (MAP65-3) associating with MTs in the

phragmoplast midzone (Deng et al., 2024c). Arabidopsis CENH3

is a substrate of AURORA3, with serine 65 of CENH3 being

phosphorylated preferentially in meristematic tissues, including

flower buds and flowers, which is crucial for the proper

development of reproductive tissues (Demidov et al., 2019).

INCENP is the largest non-catalytic subunit of CPC, directly

binding to other CPC components in animals and yeast.

Specifically, the N-terminal of INCENP interacts with Borealin

and Survivin, while the C-terminal domain with four amino acid

residues, known as the IN-box, binds to Aurora B (Komaki et al.,

2020). Recently, a putative ortholog of INCENP, called WYRD

(WYR), was found in Arabidopsis (Kirioukhova et al., 2011).
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WYR co-localizes with BORR (borealin-related, a homolog of

Borealin) in the central region of kinetochores and the

phragmoplast during mitosis and meiosis (Komaki et al.,

2020). In addition, Komaki et al. identified Arabidopsis

Survivin-like redundant proteins: borealin-related interactor 1

and 2 (BORI1 and BORI2) (Komaki et al., 2022). These proteins

bind to phosphorylated histone H3, facilitating the correct

association of CPC with the chromatin. The loss of BORI1 and

BORI2 function is lethal, while their reduced expression causes

severe developmental defects (Komaki et al., 2022).
2.4 Kinetochore proteins, cenDNAs
and cenRNAs

Like most higher eukaryotes, plant cenDNA sequence is composed

of functionally conserved but rapidly evolving tandem repeats (TRs)

and centromeric retrotransposons (CRs) as outlined in Table 2

(Oliveira and Torres, 2018; Han et al., 2021; Ramakrishnan Chandra

et al., 2023). Centromeric TRs, which form satellite sequences through

their multiple copies (Leo et al., 2020), constitute the main components

of cenDNAs. These TRs are mostly 150-200 base pair (bp) long (about

the length of a nucleosome DNA) and are rich in AT (Cutter and

Hayes, 2015; Thakur et al., 2021). Chromatin immunoprecipitation

followed by sequencing (ChIP-Seq) has been employed in numerous

studies to identify CENH3-bound TR sequences, including pAL1 (178

bp) in Arabidopsis (Wlodzimierz et al., 2023), CentC (156 bp) in maize

(Gent et al., 2017),CentO (155 bp) in rice (Lv et al., 2024),CL1 (177 bp)

in radish (Raphanus sativus) (He et al., 2015), HaCENH3CL124 (187

bp) in sunflower (Helianthus annuus) (Nagaki et al., 2015), etc.

However, exceptions exist, such as the 20-bp-long CentAs bound by

CENH3 in Astragalus sinicus (Tek et al., 2011), and the 5390-bp-long

St3-294 bound DNA in potato (Solanum tuberosum) (Gong et al.,

2012). Interestingly, the length of TRs can vary even in the same species

(Nagaki et al., 2011; Su et al., 2019). For example, tobacco (Nicotiana

tabacum) contains TRs ranging from 48 to 92 bp (Nagaki et al., 2011).

CRs are mobile elements mediated by RNA, which is

retrotranscribed into DNA, and then transposed. They constitute a

class of elements capable of moving within the genome, transcribing

their RNA into DNA using reverse transcriptase, and subsequently

inserting the DNA into a new genomic location. The insertion and

relocation of these transposons in the genome facilitate the assembly of

CENH3 nucleosomes, thus contributing to the formation of

centromere and telomere (Presting, 2018). CRs, in higher plants, are

mainly represented by Ty3 and Ty1/copia retrotransposons, both

belonging to the long terminal repeat (LTR) family. However, in

most plants, CRs are predominantly Ty3 retrotransposons. Ty1/copia

have been reported in wheat (Triticum aestivum), Brassica nigra,

Nelumbo nucifera, and the genus Sorghum (Li et al., 2013; Zhu et al.,

2016; Wang et al., 2019; Kuo et al., 2021). Furthermore, Ty3 in grasses,

including maize CRM, rice CRR, and sugarcane (Saccharum

officinarum) CRS, exhibit high homology (Gent et al., 2017; Wang

et al., 2022; Lv et al., 2024).

The transcription of cenDNAs in plants was demonstrated by

May et al. for the first time (May et al., 2005). Plant cenDNAs vary

considerably between species and are often not conserved across
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different chromosomes within a single species. Hence, cenRNAs are

not conserved as well. Centromeres are transcribed by RNA

Polymerase II (Pol II) (Figure 1) (Grenfell et al., 2016), with

kinetochore and spindle assembly being dependent on the low

levels of cenRNAs (Corless et al., 2020; Leclerc and Kitagawa, 2021).

These low levels of cenRNAs are regulated by transcription factors

(TFs) to inhibit Pol II activity, which is achieved through RNAi and

modifications of cenDNAs and cenRNAs (Gutbrod and

Martienssen, 2020; Wong et al., 2020; Mellone and Fachinetti,

2021; Hoyt et al., 2022). Generally, cenRNAs could be processed

into various forms of RNA, including small RNAs (sRNAs), long

non-coding RNAs (lncRNAs), circular RNA (circRNAs), and DNA:

RNA hybrids (Liu et al., 2021). For example, maize CENH3 could

immunoprecipitate with CentC and CRM transcript ranging from

40 to 900-nt (Topp et al., 2004). Meanwhile, maize CENP-C

interacts with DNA through 122 amino acids (aa) encoded by

exon 9-12, which binds to CentC transcript and a small single-

stranded 24-nucleotide (nt) RNA (ssRNA) homologous to CentC

(Figure 2C, Table 2). This is consistent with a model suggesting that

cenRNA enhances the stability of CENP-C by increasing its affinity

for DNA near the CENH3 nucleosome binding site (Du et al.,

2010). The C-terminal region of aKNL2 interacts with RNA and

DNA in vitro, featuring potential DNA-binding domains flanking

the CENPC-k motif that are crucial for centromere localization

(Sandmann et al., 2017). Yalagapati et al. demonstrated that the

flanking DNA-binding regions and the CENPC/CENPC-k motifs

play important role in the centromere localization of plant CENP-C

and aKNL2 (Yalagapati et al., 2024). Similarly, Arabidopsis aKNL2
binds to 23-nt ssRNA derived from the TR pAL1 transcript, with the

full-length pAL1 transcript competing with pAL1 DNA for binding

to KNL2 (Table 2) (Sandmann et al., 2017). Additionally, nucleolar

centromeric transcripts were found in maize (Koo et al., 2016), but

without the observation of nucleolar CENP-C (Du et al., 2010),

suggesting that the nucleolar assembly pathway remains unclear.

Moreover, R-loops are three strand nucleic acid structures

comprising an RNA: DNA hybrid and a displaced single-stranded

DNA (Crossley et al., 2022). Centromeric circRNAs and R-loops are

also involved in centromere function. For example, maize circRNAs

derived from CRM were reported to bind to centromeres through

R-loops (Liu et al., 2020, 2021). During kinetochore assembly,

CCTT (CENP-C targeting transcript), a human lncRNA, could

boost the recruitment of CENP-C to cenDNAs though R-loop and

RNA-protein interaction (Zhang et al., 2022). However,

centromeric lncRNAs in plants remain abstruse.
3 Applications of kinetochore proteins
in plants

3.1 Induction of ploidy changes in plants

Kinetochore dysfunction leads to frequent ploidy changes in

plants, encompassing the formation of haploid and polyploid

(Kozgunova et al., 2019; Keçeli et al., 2020). Uniparental genome

elimination often occurs in interspecies hybridization, resulting in

the formation of uniparental haploid progeny (Ishii et al., 2016).
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TABLE 2 The cenDNAs and cenRNAs that bind to CENH3, CENP-C and KNL2 in plants.

Name Species DNA/RNA Annotation References

CENH3

Arabidopsis thaliana AthCEN178 (pAL1) 178-bp tandem repeat (Wlodzimierz et al., 2023)

Zea mays CentC 156-bp tandem repeat (Gent et al., 2017)

Oryza sativa CentO 155-bp tandem repeat (Lv et al., 2024)

Raphanus sativus
CL1 177-bp tandem repeat

(He et al., 2015)
CL25 348-bp tandem repeat

Helianthus annuus HaCENH3CL124 187-bp tandem repeat (Nagaki et al., 2015)

Astragalus sinicus CentAs 20-bp tandem repeat (Tek et al., 2011)

Solanum tuberosum St3-294 5390-bp tandem repeat (Gong et al., 2012)

Nicotiana tabacum

HT3E06 92-bp tandem repeats

(Nagaki et al., 2011)HT3G02 68-bp tandem repeats

HT1H04 48-bp tandem repeats

Saccharum officinarum So1 137-bp tandem repeat (Huang et al., 2021)

Sorghum bicolor SorSat137 (CEN38) 137-bp tandem repeat (Kuo et al., 2021)

Glycine max
GmCent-1 family 92-bp tandem repeat

(Tek et al., 2010)
GmCent-4 family 411-bp tandem repeat

Phaseolus vulgaris CentPv1 528-bp tandem repeat (Iwata-Otsubo et al., 2013)

Vigna unguiculata CentVu

455-bp tandem repeat (Iwata-Otsubo et al., 2016)

721-bp tandem repeat
(Ishii et al., 2020)

1600-bp tandem repeat

Pisum sativum

TR-7 164-bp tandem repeat (Neumann et al., 2012)

FabTR-10-PST-A family 459-bp tandem repeat
(Macas et al., 2023)

FabTR-10-PST-B family 1975-bp tandem repeat

Arabidopsis thaliana ATHILA Ty3 centromeric retrotransposon (Wlodzimierz et al., 2023)

Zea mays CRM Ty3 centromeric retrotransposon (Gent et al., 2017)

Oryza sativa CRR Ty3 centromeric retrotransposon (Lv et al., 2024)

Saccharum officinarum CRS Ty3 centromeric retrotransposon (Wang et al., 2022)

Glycine max GmCR Ty3 centromeric retrotransposon (Tek et al., 2010)

Vigna unguiculata VuCR Ty3 centromeric retrotransposon (Ishii et al., 2020)

Beta vulgaris Beetle7 Ty1/copia centromeric retrotransposon (Kowar et al., 2016)

Brassica nigra CL32 Ty1/copia centromeric retrotransposon (Wang et al., 2019)

KNL2 Arabidopsis thaliana pAL1 178-bp tandem repeat (Sandmann et al., 2017)

CENH3 Zea mays
CentC transcript

~900-nt (Topp et al., 2004)
CRM transcript

CENP-C Zea mays
CentC transcript 156-bp

(Du et al., 2010)
small single stranded RNA 24-nt

KNL2 Arabidopsis thaliana
pAL1 transcript 178-bp

(Sandmann et al., 2017)
small single stranded RNA 23-nt
F
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This method is commonly used in actual crop production to speed

up the process of crop breeding by obtaining double haploid plants

(Ishii et al., 2016). Doubled haploid induction has been achieved

using both in vitro (culture of immature male or female

gametophytes) and in vivo (inter- and intra-specific hybridization,

centromere-mediated haploidization) methods, while the

systematic in vitro methods are species- and genotype-dependent

and limited (Dwivedi et al., 2015; Mayakaduwa and Silva, 2023). On

the contrary, the method by haploid-inducing line is relatively high-

efficient and its effect is stable without genotype restriction.

CENH3-mediated haploid induction is one of the in vivo

techniques used for haploid doubling breeding (Dwivedi et al.,

2015; Mayakaduwa and Silva, 2023). Through sequence substitution

or point mutation of CENH3, it compensates for the mutation of

cenh3 to form a haploid-inducing line. Crossing this haploid line

with wildtype (WT) plants removes the uniparental genome,

resulting in a progeny that possess only the chromosomes of the

wild-type parent thus inducing a haploid generation. In addition to

the common advantages of the method based on haploid-inducing

line, cytoplasm swapping by CENH3-mediated haploid induction

facilitates efficient screening of unique nucleotype-plasmotype

combinations, a rapid and precise method for assessment of the

phenotypic effects of natural variation in organellar genomes (Flood

et al., 2020). The utility of paternal haploids for the rapid swap of

cytoplasmic male sterility (CMS) from the donor to recipient has

been successfully demonstrated in maize (Bortiri et al., 2024) and

broccoli (Brassica oleracea) (Han et al., 2024), and is elaborated in

the commentary by Maruthachalam (Maruthachalam, 2024).

In recent years, advances in CENH3-mediated haploid

induction methods have been made in Arabidopsis (Table 3)

(Ravi and Chan, 2010; Karimi-Ashtiyani et al., 2015; Kuppu et al.,

2020; Marimuthu et al., 2021), maize (Kelliher et al., 2016; Wang

et al., 2021), wheat (Lv et al., 2020), cotton (Gossypium hirsutum)

(Gao et al., 2020), switchgrass (Panicum virgatum) (Yoon et al.,

2022) carrot (Daucus carota) (Meyer et al., 2023) and onion (Allium

cepa) (Manape et al., 2024), but many explicit studies are focused on

the model plant Arabidopsis [reviewed in (Thondehaalmath et al.,

2021)]. For example, GFP–tailswap is a transgene in which the N-

terminal of CENH3 is replaced with that of histone H3.3 encoded

by AT1G13370 and fused with green fluorescent protein (GFP)

(Ravi and Chan, 2010). Transferring Arabidopsis GFP-tailswap into

cenh3-1 embryo-lethal mutants restored wild type phenotypes of

the plants (Ravi and Chan, 2010). These GFP-tailswap plants,

producing only a small amount of pollen, were used as maternal

parents and crossed with different ecotypes of Arabidopsis. About

25 to 45% of the surviving progeny produced haploids containing

only wild-type chromosomes, with the rest being diploids and

aneuploids (Table 3) (Ravi and Chan, 2010). The similar method

was applied for haploid plants in maize (Kelliher et al., 2016).

However, the GFP-tailswap method has been ineffective in crop

plants, and outside of Arabidopsis, it has proven to be less effective,

generally producing <1% haploids (Kalinowska et al., 2019). There

are multiple other frequently-used approaches to manipulate

CENH3 in plants: expressing CENH3 protein that contained

amino acids substitution or small deletion in its conserved C-

terminal HFD in a cenh3/cenh3 null mutant (Kuppu et al., 2020;
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Meyer et al., 2023), using a heterozygous null mutation (cenh3/

CENH3) constructed through CRISPR-Cas9 (Wang et al., 2021;

Yoon et al., 2022), and producing plants with restored frameshift

mutations or deletions in the endogenous copy of CENH3 (Lv et al.,

2020). Interestingly, Manape et al. proposed that unlike Arabidopsis

(Ahmadli et al., 2023) and maize (Kelliher et al., 2016), a nominal

reduction in CENH3 expression using RNAi resulted in genome

elimination when crossed with WT onion, providing a potential

method for crop production where CRISPR/Cas9-based knockout

generation is not feasible (Manape et al., 2024). A study of cotton

CENH3 RNAi manipulation showed similar results, and the

haploid-inducing effects of in vitro CENH3 inhibition were much

the same to that of in vivo CENH3 RNAi technique (Gao et al.,

2020). However, the centromere-based haploid induction

technology requires genome editing, which is not realistic for

crop breeding. Thus, the protein degradation strategy for haploid

induction plant may be more feasible, such as nanobody-targeted

ubiquitin proteasome-based degradation of EYFP-tagged CENH3

in Arabidopsis (Demidov et al., 2022). Notably, in maize, the

integration of two in vivo haploid induction methods, namely

CENH3-mediated haploid induction and the conventional

breeding improvement based on the Stock6 germplasm, could

rapidly and effectively improve the maternal haploid induction

rates of maize inducer lines (Meng et al., 2022). Besides CENH3,

KNL2 mutants were also used as haploid inducers, where a point

mutation in the CENPC-k motif of KNL2 was found sufficient to

produce haploid-inducing lines (Ahmadli et al., 2023). Thus,

conserved CENH3 and other kinetochore proteins provided

potential targets for haploid induction in crop varieties.

Moreover, heat stress treatments have been shown to increase the

frequency of CENH3-mediated or knl2 mutant-induced haploid

generation (Ahmadli et al., 2023; Jin et al., 2023).

In addition to the production of haploids, the destruction of

plant kinetochore proteins also led to the formation of polyploids.

There are two different pathways to study polyploidy in nature:

mitotic or somatic chromosome doubling and cytogenetics

variation (Basit and Lim, 2024). Chemical such as colchicine and

gaseous i.e. nitrous oxide have been deliberated as strong polyploidy

causing agents (Basit and Lim, 2024). Although colchicine is the

most widely used polyploidy-inducing agent, it is highly toxic to

mammals and plants. Arshad et al. firstly reported paclitaxel and

caffeine–taurine, the new colchicine alternatives for chromosomes

doubling in maize haploid breeding with lower morphological and

physiological by-effects (Arshad et al., 2023). At present, there are

many methods to induce polyploid artificially, but the methods that

can be used for large-scale production are limited, and there are still

problems such as low frequency and high chimerism rate when

inducing chromosome doubling. With the deeper kinetochore-

related researches, it is proven that destruction of plant

kinetochore proteins may also cause chromosome doubling,

providing a new possible perspective for polyploidy. For example,

the knockout of several kinetochore components in moss resulted in

the failure of chromosome separation and cytoplasmic division,

ultimately leading to the formation of polyploid cells (Kozgunova

et al., 2019). In Arabidopsis, prolonged SAC activation triggers a cell

cycle reset, leading to the formation of duplicate chromosomes, and
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the absence of nuclear division (Komaki and Schnittger, 2017).

Nonetheless, studies on kinetochore-related polyploids are

still scarce.
3.2 Synthesis of plant
artificial chromosomes

Synthetic genomics, a novel paradigm to study chromosome

characteristics and edit biological functions, offers a fertile platform in

the realm of applied crop science (Schindler et al., 2018; Birchler and

Swyers, 2020; Fachinetti et al., 2020). With the development of

synthesis technology and a gradual reduction of cost, plant genome

construction has garnered increasing interest from researchers
Frontiers in Plant Science 11
(Puchta and Houben, 2023; Wang et al., 2024). For example,

leveraging the specific binding of lactose repressor (LacI) to the

lactose operator (LacO), artificial centromeres were successfully

constructed by depositing the LacI-CENH3 fusion protein on

Arabidopsis chromosomes harboring the LacO site, using CENH3,

as the primary epigenetic marker (Teo et al., 2013). Besides, LexA, the

highly conserved repressor protein, plays a significant role in

regulating the stress response of cells when chromosomal DNA is

severely damaged (Gao et al., 2023). In maize, the native CENH3

could be recruited to long arrays of LexA operator (LexO) repeats

through LexA-CENH3 fusion protein, forming new heritable

centromeres (Dawe et al., 2023). Notably, CENH3-mediated

genome elimination can be used as a trigger for ring

minichromosomes which could serve as an alternative tool for

stacking multiple genes through gene targeting, similar to the use

of PACs (Tan et al., 2023). However, the precise sequence

organization and structure of centromeres in most plants remain

obscure. Furthermore, there appears to be no correlation between

plant kinetochore proteins and the natural centromere sequences

introduced through genetic transformation (Phan et al., 2006). PACs

are synthetic chromosomes tailored for various applications in plant

biology and biotechnology, including genetic engineering, trait

stacking, gene expression studies, chromosome stability research,

crop improvement, and biopharmaceutical production. As plant

kinetochore proteins are the key components of chromosomes, a

thorough understanding of their composition, function, and

regulation are crucial for the successful synthesis of PACs.
4 Conclusion and future perspectives

Kinetochore complexes in animals and yeast have been

extensively studied for the past few years, with a few homologs

being identified in plants. However, studies on plant kinetochore

complexes are still in its infancy. Many kinetochore protein

components have been identified in animals and yeast, but their

homologs have not yet been identified in plants. Furthermore, the

reported plant kinetochore proteins also require further

exploration, particularly with regards to their interacting proteins

and specific molecular regulation mechanisms. By exploring deeper

plant kinetochores, researchers can uncover unique features and

adaptations that contribute to the accurate transmission of genetic

material during cell division in plants. Apart from CENH3, the

interactions between/among other kinetochore proteins, cenDNAs

and cenRNAs are rarely reported, and the current research on plant

kinetochore complex is confined to a few plant species. The

components of the kinetochore complex possess great potential

and economic value. Research in this area has the potential to lead

to technological breakthrough in the field of crop production and

synthetic genomics.
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Mutant
type

Cross (♀×♂)
Total
plants

analyzed
Haploids

GFP–tailswap

GFP–tailswap × WT Col-0 67 23 (34%)

WT Col-0 × GFP–tailswap 116 5 (4%)

GFP–tailswap × WT Ler 127 32 (25%)

GFP–tailswap × WT Ws-0 22 10 (45%)

GFP-CENH3
GFP-CENH3 × WT 164 8 (5%)

WT × GFP-CENH3 112 0 (0%)

G83E G83E × WT Ler 164 20 (12.2%)

E89K E89K × WT Ler 34 15 (44.1%)

A136T A136T × WT Ler 21 5 (23.8%)

T159I T159I × WT Ler 97 19 (19.6%)

D6 line 7 D6 line 7 × WT Ler 70 18 (25.7%)

D6 line 2 D6 line 2 × WT Ler 23 2 (8.7%)

D33 line 8 D33 line 8 × WT Ler 25 4 (16.0%)

D33 line 18 D33 line 18 × WT Ler 83 14 (16.9%)

GFP–tailswap

GFP–tailswap (22°C) × WT
Col-0 (22°C)

73 31 (42.5%)

GFP–tailswap (30°C) × WT
Col-0 (22°C)

55 53 (96.4%)

GFP–tailswap (22°C) × WT
Col-0 (30°C)

67 38 (56.7%)

G83E

G83E (22°C) × WT Col-0
(22°C)

116 6 (5.2%)

G83E (30°C) × WT Col-0
(22°C)

48 30 (62.5%)

G83E (22°C) × WT Col-0
(30°C)

68 9 (13.2%)
aGFP–tailswap replaces the N-terminal tail domain of CENH3 with the tail of conventional
H3, using the H3.3 variant (encoded by AT1G13370) and is tagged with green fluorescent
protein. GFP-CENH3 represents transgenic green fluorescent protein-tagged CENH3.
G83E: GGA→GAG codon changed by TILLING; E89K: GAG→AAG; A136T: GCG→ACG;
T159I: ACT→ATT.
D6 line 7, D6 line 2, D33 line 8 and D33 line 8 are constructed through CRISPR/Cas9.
Data used were from the references (Ravi and Chan, 2010; Kuppu et al., 2020; Ahmadli
et al., 2023).
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