
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Nutr.
Sec. Nutrition and Microbes
Volume 12 - 2025 | doi: 10.3389/fnut.2025.1597206
This article is part of the Research TopicMaternal and Infant Nutrition: Impact on Breast Milk, Infant Gut Microbiota and Health DevelopmentView all 8 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The early-life gut microbiome has been increasingly recognized as a contributing factor for pediatric health and diseases. Studies have reported that the human gut microbiota colonization commences at birth and progresses over the course of the first three years of life, until it reaches a mature and stable diversity and composition. During this critical window, the gut microbiome is vulnerably subjected to environmental factors, leading to transient microbial reprogramming and functional changes. The dynamic early-life intestinal microbiota is frequently manipulated by environmental factors, which impact the composition and function of the gut microflora, hence confer to short-and/or long-term health outcomes extending to adulthood. Evidence has shown that the imbalanced gut microbial community early in life is associated with several childhood diseases and disorders, such as inflammatory bowel diseases, allergies, attention-deficit/hyperactivity disorder and pediatric obesity. Manipulating the early-life intestinal microbes can either ameliorate or impair host's immunological and metabolic responses, impacting overall health conditions later in life. This narrative review article discusses the recent understanding and implications of the early-life gut microbiome in common pediatric diseases and potential intervention approaches.
Keywords: Early Childhood, microbiome, Metabolome, Pediatric diseases, gastrointestinal disorders, Neurological dysfunctions, Metabolic Diseases, Atopy
Received: 20 Mar 2025; Accepted: 14 Apr 2025.
Copyright: © 2025 Bankole and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Yuanyuan Li, Biology, University of Maryland, College Park, College Park, 35294-1170, AL, United States
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.