Skip to main content

ORIGINAL RESEARCH article

Front. Neurosci.

Sec. Brain Imaging Methods

Volume 19 - 2025 | doi: 10.3389/fnins.2025.1522964

Channel component correlation analysis for multi-channel EEG feature component extraction

Provisionally accepted
  • 1 Xi'an Jiaotong University, Xi'an, China
  • 2 State Key Laboratory of Robotics, Shenyang Institute of Automation (CAS), Shenyang, Liaoning Province, China

The final, formatted version of the article will be published soon.

    Electroencephalogram (EEG) analysis has shown significant research value for brain disease diagnosis, neuromodulation and brain-computer interface (BCI) application. The analysis and processing of EEG signals is complex since EEG are nonstationary, nonlinear, and often contaminated by intense background noise. Principal component analysis (PCA) and independent component analysis (ICA), as the commonly used methods for multi-dimensional signal feature component extraction, still have some limitations in terms of performance and calculation. In this study, channel component correlation analysis (CCCA) method was proposed to extract feature components of multi-channel EEG. Firstly, empirical wavelet transform (EWT) decomposed each channel signal into different frequency bands, and reconstructed them into a multi-dimensional signal. Then the objective optimization function was constructed by maximizing the covariance between multi-dimensional signals. Finally the feature components of multi-channel EEG were extracted using the calculated weight coefficient. The results showed that the CCCA method could find the most relevant frequency band between multi-channel EEG. Compared with PCA and ICA methods, CCCA could extract the common components of multi-channel EEG more effectively, which is of great significance for the accurate analysis of EEG. The CCCA method proposed in this study has shown excellent performance in the feature component extraction of multi-channel EEG and could be considered for practical engineering applications.

    Keywords: Channel component correlation analysis, electroencephalogram (EEG), Feature component extraction, Multi-channel signal, event-related potentials (ERP)

    Received: 06 Nov 2024; Accepted: 11 Feb 2025.

    Copyright: © 2025 Yan, Luo and Du. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Wenqiang Yan, Xi'an Jiaotong University, Xi'an, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more