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Introduction: Electroencephalogram (EEG) analysis has shown significant research 
value for brain disease diagnosis, neuromodulation and brain-computer interface 
(BCI) application. The analysis and processing of EEG signals is complex since EEG 
are nonstationary, nonlinear, and often contaminated by intense background noise. 
Principal component analysis (PCA) and independent component analysis (ICA), 
as the commonly used methods for multi-dimensional signal feature component 
extraction, still have some limitations in terms of performance and calculation.

Methods: In this study, channel component correlation analysis (CCCA) method 
was proposed to extract feature components of multi-channel EEG. Firstly, empirical 
wavelet transform (EWT) decomposed each channel signal into different frequency 
bands, and reconstructed them into a multi-dimensional signal. Then the objective 
optimization function was constructed by maximizing the covariance between 
multi-dimensional signals. Finally the feature components of multi-channel EEG 
were extracted using the calculated weight coefficient.

Results: The results showed that the CCCA method could find the most relevant 
frequency band between multi-channel EEG. Compared with PCA and ICA 
methods, CCCA could extract the common components of multi-channel EEG 
more effectively, which is of great significance for the accurate analysis of EEG.

Discussion: The CCCA method proposed in this study has shown excellent 
performance in the feature component extraction of multi-channel EEG and 
could be considered for practical engineering applications.
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1 Introduction

Electroencephalogram (EEG) reflects the electrophysiological activity on the cerebral cortex 
or scalp’s surface, which includes valuable information related to physiological state and disease. In 
clinical studies, EEG signals can be used to diagnose certain brain diseases and provide effective 
treatments for some of these diseases (Dockree et al., 2017; Tokariev et al., 2019; Wessel et al., 2016; 
Martínez et  al., 2019; Hamilton et  al., 2019). In engineering applications, EEG-based brain-
computer interfaces (BCIs) have been developed. Because different mental activities lead to typical, 
distinguishable, and task-specific patterns of EEG signals, a BCI system can be used to achieve 
control goals by extraction and classification of EEG features (Anumanchipalli et al., 2019; Heelan 
et al., 2019; Kubanek et al., 2020; Yan et al., 2018; Edelman et al., 2019). However, EEG signals are 
nonstationary random signals without ergodic states and often contain strong background noise. 
Therefore, the analysis and processing of EEG signals are complex.

EEG are collected by electrodes arranged in different brain regions, possessing multi-channel 
characteristic. Due to the inevitable existence of information redundancy in EEG, extracting feature 
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components effectively from multi-channel EEG has become a critical 
step in EEG analysis. Principal component analysis (PCA) (Rahman et al., 
2020; Rahman et al., 2019) and independent component analysis (ICA) 
(Feng et al., 2020; Zhua et al., 2020) are the most commonly used multi-
channel EEG feature component extraction methods. PCA reduces the 
dimensionality of the data space to eliminate information redundancy 
and noise by keeping only those characteristics that contribute most to its 
variance. A set of orthogonal basis vectors is determined by PCA as the 
linear combination with maximum variance. The weights and 
eigenvectors can be  calculated through an orthogonal linear 
transformation of data where the eigenvectors constitute the new axes, 
resulting in an orthogonal and optimal coordinate system. PCA assumes 
that the useful signal and noise are statistically uncorrelated. However, this 
lack of correlation with noise is not necessarily true for multi-channel 
EEG signals, so PCA often behaves poorly in feature component 
extraction for these signals. In ICA, a multi-channel observed signal is 
decomposed into a set of linearly independent signals. ICA assumes 
statistical independence of the signal sources and the non-Gaussian 
nature of independent components, and aims to separate independent 
signals from mixed signals. The objective criterion function of ICA is 
defined as the measurement of the independence of the independent 
components (ICs). Many criteria have been proposed, such as 
minimization of mutual information (MMI), infomax (or maximization 
of entropy, ME), maximization of negentropy (MN), and maximum 
likelihood estimation (MLE) (Bell and Sejnowski, 1995; Lee et al., 1999; 
Cardoso, 1997; Yang and Amari, 1997). ICA performs quite well in blind 
source separation (BSS) of electrophysiological signals due to the 
uniqueness of independent components. However, ICA requires an 
additional process to determine which of the independent components 
are useful signals, and there is still no widely accepted and effective 
method to distinguish noise and useful signals from the ICs.

The essence of extracting effective feature components from multi-
channel EEG is to extract common components in multi-channel signals, 
which are often in a specific frequency band. Therefore, this study firstly 
decomposed each channel signal in multi-channel EEG into different 
frequency bands, and then took the maximum correlation between 
channel signals as the optimization objective to realize the feature 
extraction. The adaptive decomposition concept of the empirical mode 
decomposition (EMD) and the tight support framework of the wavelet 
transform (WT) are combined into empirical wavelet transform (EWT) 
(Gilles, 2013), which can recognize the location of the feature information 
in the Fourier spectrum and extract different frequency components of 
signals adaptively. Therefore, the EWT was used to decompose n channel 
signals in multi-channel EEG into different frequency bands, which 
would obtain n multi-dimensional signals composed of different bands 
components. The optimization objective was to maximize the covariance 
between n multi-dimensional signals, which aimed to extract the most 
relevant feature components from the frequency bands with common 
components in n channel signals. The Lagrange function was used to 
transform the optimization objective into a Rayleigh-Ritz eigenvalue 
problem whose solved values corresponded to the importance of 
extracted feature components. Besides, the feature extraction effects of 
PCA, ICA, and the proposed channel component correlation analysis 
(CCCA) methods were compared on multi-channel EEG. The results 
showed that the CCCA method could find the feature bands with 
common components between multi-channel EEG, and could better 
extract the effective feature components in multi-channel signals.

The organization of this paper is as follows. In Section II, the data 
and methods used in this paper are introduced. Section III analyzes 

the effect of CCCA method on the feature components extraction of 
multi-channel event-related potential (ERP) and steady-state visual 
evoked potential (SSVEP) signals, followed by discussions in Section 
IV. Finally, we conclude the work in Section V.

2 Methods and materials

2.1 Empirical wavelet transform

Through designing an adaptive wavelet filter, EWT can extracts a 
series of amplitude modulation-frequency modulation (AM-FM) 
single-component signals with compact support Fourier spectrum. 
The key to the design of adaptive wavelet filter is the frequency band 
division. EWT standardizes the frequency range of the Fourier 
spectrum to [0, π] based on Shannon criterion, and divides it into N 
segments using a frequency band division method. Each frequency 
band is expressed as 𝛻n = [wn-1, wn] (n = 1, …, N), wn and wn-1 are the 
upper and lower limits of each frequency band, respectively. Based on 
the idea of constructing wavelets by Little wood-Paley and Meyer 
theory, the empirical scaling function ϕn(w) as shown in Equation 1 
and empirical wavelet function γn(w) of wavelet transform shown in 
Equation 2 are defined respectively:
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where w is the frequency value, wn is the n-th boundary frequency, 
and τn = μwn, where μ is the transformation parameter to ensure that 
there is no overlap between wn-1 and wn. β(x) is a polynomial that 
satisfies the Equation 3 and is defined in the interval [0, 1]:

 ( ) ( )4 2 335 85 70 20x x x x xβ = − + −
 

(3)

Similar to WT, the approximate coefficient Ws
ε(0,t) and the detail 

coefficient Ws
ε(n,t) are obtained by the inner product of the signal 

with ϕn(w) and γn(w) respectively. The low and high frequency 
components of the signal are represented by the approximate 
coefficient and the detail coefficient. By using EWT, the signal f(t) will 
be decomposed into a series of AM-FM component fk(t) (k = 1, 2, …) 
with frequency from low to high as shown in Equations 4,5:
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 ( ) ( ) ( )0 10,sf t W t tε= ∗∅  (4)

 ( ) ( ) ( ),k s kf t W k t tε γ= ∗  (5)

where the symbol * denotes the convolution operation.

2.2 Channel component correlation 
analysis

The procedure of CCCA proposed in this study is shown in 
Figure 1. To be specific, for the multi-channel EEG X = [x1, x2, …, xnc], 
where nc represents the number of channels, the EWT was used to 
decompose the each channel signal xi into different frequency bands. 
After decomposing xi, the frequency band decomposition results were 
reconstructed into Fi  = [fi,1, fi,2, …, fi,m](i = 1, 2, …, nc), where m 
represented the number of frequency bands. In general, the effective 
feature components of signal are located in a specific frequency band. 
By giving a larger weight to the effective frequency band and a smaller 
weight to the non-effective frequency band, the main feature 
components can be  extracted by linear summation as shown in 
Equation 6:
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where wj is the weight coefficient corresponding to the j-th 
frequency band in the decomposed signal Fi, and si(t) is the effective 
feature component of the signal xi. The weight coefficient determines 
the extraction effect of the feature components of the EEG signal. In 
this paper, the maximum correlation between the effective feature 

components extracted from each channel was taken as the optimization 
goal, and the weight coefficient was solved to extract the common 
components in the multi-channel EEG signals. The sum of the 
covariances between the effective feature components extracted from 
each channel is shown in Equation 7:
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where S is defined as shown in Equation 8:
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When maximizing WTSW was used as the objective optimization 
function, the unique solution of W cannot be obtained. To obtain a 
finite solution, the effective feature components si(t) extracted from 
each channel EEG signal need to be  normalized as shown in 
Equation 9:
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where Q is defined as shown in Equation 10:
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Thus, the solution of W can be  constructed as shown in 
Equation 11:

FIGURE 1

Channel component correlation analysis proced.
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The equation above is a Rayleigh quotient problem of S and Q, and 
can be equivalent to Equation 12:
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Define a Lagrange function as shown in Equation 13 by introducing 
the Lagrange multiplier λ:

 ( ) ( )1T TL w W SW W QWλ= − + −
 

(13)

Derivate L(w) to W and make it equal to 0, resulting in Equation 14:

 
( ) 0

L W
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Based on the equation SW = λQW, the closed-form solution of W 
is a matrix of eigenvectors obtained by the generalized eigenvalue 
decomposition of Q−1S. After obtaining the weight coefficients 
corresponding to each frequency band, the feature components can 
be extracted by the following formula Equation 15:

 1

1 cn
T

i
c i

y W F
n =

= ⋅ ∑
 

(15)

The pseudo code of the CCCA algorithm is shown as follows:

2.3 The data used in this study

The event-related potential (ERP) dataset (Zheng et al., 2020) used 
in this study is comprised of target image detection tasks, and the 

dataset is freely available at https://doi.org/10.6084/
m9.figshare.12824771.v1. The stimulation was presented by a 24.5-
inch liquid crystal display (LCD) monitor with a resolution of 
1920 × 1,080 pixels and a vertical refresh rate of 60 Hz. Street scene 
images were presented at 10 Hz (10 images per second) in the center 
of the screen within a 1,200 × 800-pixel square. The images containing 
humans were regarded as target images and the subjects were asked to 
press keys immediately after they detected a target. The dataset 
includes 14 healthy subjects and the sample rate is 1,000 Hz. For each 
subject, the experiment consisted of three blocks. Each block 
contained 56 target image stimulus trials. The ERP signal analysis 
channels selected in this study were FP2, AF3, AF4, F1, FZ, F2, FC1, FCZ, 
FC2, C1, CZ, C2, P1, PZ, P2.

The steady-state visual evoked potential (SSVEP) dataset (Wang 
et al., 2017) used in this study is freely available on http://bci.med.
tsinghua.edu.cn/download.html. This dataset includes SSVEP-BCI 
recordings of 35 healthy subjects focusing on 40 characters flickering 
at different frequencies (8–15.8 Hz with an interval of 0.2 Hz). For 
each subject, the experiment consisted of six blocks, where each block 
contained 40 trials corresponding to all 40 characters presented in a 
random order. The sampling frequency of the data is 250 Hz. The 
SSVEP signal analysis channels selected in this study were O1, O2, OZ, 
PO3, PO4, POZ, PO5, and PO6.

3 Results

3.1 Analysis of the feature components 
extraction effect on ERP signals based on 
CCCA

3.1.1 Layer selection of empirical wavelet 
transform decomposition

Empirical wavelet decomposition was applied by the CCCA 
method on each channel signal of the multi-channel EEG. Figure 2A 
shows the five-layer decomposition results of the channel FP2, in 
which each layer corresponds to a frequency level. Figure 2B shows 
the power spectrum corresponding to each layer, and it can be seen 
that the central frequency of the five-layer are mainly at 40 Hz, 30 Hz, 
24 Hz, 10 Hz and 6 Hz, respectively. Considering that the feature 
components of ERP are at a low frequency, and only the decomposition 
results of the third to fifth layers were selected for subsequent feature 
components extraction.

3.1.2 Analysis of the feature components 
extraction effect of single-trial ERP

The ERP signals were extracted with 800 ms after the target image 
appeared, filtered by a [2, 50] Hz band-pass filter. Figure 3 shows the 
ERP feature components extracted from channels (FP2, AF3, AF4, F1, 
FZ, F2, FC1, FCZ, FC2, C1, CZ, C2, P1, PZ, P2) using PCA, ICA and CCCA 
methods. To compare the extraction effects of the three methods, the 
ERP signals obtained by 56 target image stimuli in electrode FZ were 
superposed and averaged as the reference signal. It can be seen from 
Figure 3 that the signal-to-noise ratio (SNR) of ERP is effectively 
improved after superimposing and averaging, and the P300 feature 
component can be significantly observed. In the extraction results of 
ERP induced by single-trial target images stimuli, PCA hardly 
extracted effective ERP components, and the result of ICA was quite 
different from the reference signal, while the result of CCCA was 
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highly similar to the reference signal in terms of latency and amplitude. 
According to the results of PCA and ICA, it is difficult to extract 
effective feature components of single-trial evoked EEG due to their 

weak amplitude and large background noise. Although the SNR of 
multi-trial ERP signals can be  improved by the superposing and 
averaging method, it also causes the loss of dynamic variation 
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FIGURE 2

(A) Results of empirical wavelet decomposition. (B) Power spectrum analysis of empirical wavelet decomposition.
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FIGURE 3

Feature components extraction results of single-trial ERP.
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information of ERP signals across trials (Mouraux and Iannetti, 2008). 
Therefore, the precise feature component extraction method of single-
trial EEG has attracted much attention. Compared with the commonly 
used PCA and ICA methods, the CCCA method proposed in this 
study has important engineering application value in the feature 
components extraction of single-trial ERP.

Based on the similarity between the ERP feature waveforms 
extracted by the CCCA, PCA, and ICA methods and those derived 
from the reference signal (The ERP signals obtained from channel Fz 
under 56 stimulations of the target image were superimposed and 
averaged to serve as the reference signal) as the judgment criterion, 
this paper compared the extraction effects of these three methods on 
the ERP feature components of single-trial multi-channel EEG signals. 
We calculated the similarity results for all trials of each subject and 
then carried out a superimposed average on the calculation results of 
all subjects. As shown in Figure 4A, it can be observed that the ERP 
feature waveforms extracted by the CCCA method exhibit the 
strongest correlation with those obtained from the reference signal. 
Moreover, the ANOVA test indicates that there are significant 
differences between the extraction effect of the CCCA method on ERP 
feature components and that of PCA as well as ICA (***p < 0.001).

3.1.3 Analysis of the feature components 
extraction effect of multi-trial ERP of the same 
electrode

The multi-trial average method is to superpose and average the 
multi-trial ERP signals of the same electrode. The multi-trial ERP can 
be  constructed into a multi-channel form by regarding each trial 
signal as a channel signal. Figure 5 shows the ERP feature components 
extracted by applying PCA, ICA, CCCA and multi-trial average 
methods on EEG signals, which were obtained by 25 target images 
stimuli in FCZ electrode. It can be  seen from Figure  5 that the 
extraction effect of PCA was not ideal, which was quite different from 
the results of the multi-trial average method, the results of ICA had a 
certain similarity with that of the multi-trial average method, and 
CCCA achieved the most similar extraction results. In addition, 
compared with the multi-trial average method, the ERP waveform 
extracted by CCCA method was smoother, which would be more 
conducive to confirming parameters such as the latency and amplitude 
of the P300 component. Likewise, we adopted the similarity between 
the ERP feature waveforms extracted via the CCCA, PCA, and ICA 
methods and those derived from the reference signal (The EEG signals 

obtained from electrode channel FCz under 25 stimulations of the 
target image.) as the judgment criterion. Subsequently, we computed 
the similarity results for each subject and conducted a superimposed 
average on the calculation results of all subjects. As depicted in 
Figure 4B, it is evident that the ERP feature waveforms extracted by 
the CCCA method from the signals of the same electrode channel 
across multiple trials possess the highest correlation with the ERP 
feature waveforms obtained from the reference signal. Moreover, the 
ANOVA test demonstrates that there are significant differences 
between the extraction effect of the CCCA method on ERP feature 
components and those of PCA and ICA (***p < 0.001).

Comparing the results of Figures 3, 5, it can be seen that the ERP 
components extraction effect of the multi-trial signals of the same 
electrode was better than that of the single-trial signals composed of 
different electrodes. This may because different electrodes do not all 
have good EEG responses, and channel selection is needed to achieve 
better results. It may also because different electrodes have different 
phases in a single trial, but the phase of the same electrode is locked 
in different trials, so the effective feature components of EEG can 
be extracted more stably. Good performance has been shown by the 
CCCA method in single-trial and multi-trial ERP feature components 
extraction, indicating that it has potential application value in multi-
channel EEG feature components extraction.

3.1.4 Analysis of common feature components 
extraction effect of multi-channel EEG based on 
the CCCA method

As shown in Figure 1, the CCCA method first applied EWT on each 
channel signal and decomposed it into different frequency bands. Then, 
the maximum correlation between the effective feature components 
extracted from each channel EEG signal was taken as the optimization 
goal, in order to solve the corresponding weight coefficients of each 
frequency band. Figure 6A showed the superposition average results of 
the 3–5 layer empirical wavelet decomposition (corresponding to 
Equation 15) obtained from ERP signals of the channels (FP2, AF3, AF4, 
F1, FZ, F2, FC1, FCZ, FC2, C1, CZ, C2, P1, PZ, P2), which were induced by 
target images stimuli. It can be seen from Figure 6A that the frequency 
band 3 had a strong similarity with the ERP waveform, but frequency 
bands 1 and 2 did not have obvious ERP components. The effective ERP 
feature components can be  extracted by giving a larger weight to 
frequency band 3 and a smaller weight to frequency bands 1 and 2. 
Figure 6B showed three sets of weight coefficients calculated by the 

(a) (b)
FIGURE 4

(A) The similarity results of the ERP feature waveforms extracted, respectively, by the three methods of CCCA, PCA, and ICA and the reference signal in 
single-trial multi-channel EEG signals. (B) The similarity results of the ERP feature waveforms extracted, respectively, by the three methods of CCCA, 
PCA, and ICA and the reference signal in multi-trial single-channel EEG signals.
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CCCA method, which corresponded to the feature importance from 
large to small, and we only used the first set to extract EEG feature 
components. It can be seen from Figure 6B that the weight coefficient w1 
would give the maximum weight to frequency band 3, and the frequency 
band 1 and 2 would be given a smaller weight. This indicated that the 
CCCA method could give a larger weight to the frequency bands with 
strong correlation of each channel, while the feature bands with weak 
correlation of each channel were given a smaller weight, so as to extract 
the common feature components in the multi-channel EEG.

We also analyzed the common feature components extraction 
effect of multi-channel EEG under non-target image stimulation 
based on the CCCA method, and the results were shown in 
Figures 6C,D. It can be seen from Figure 2B that the center frequency 
of frequency band 1, band 2 and band 3 were 24 Hz, 10 Hz and 6 Hz, 
respectively. To extract the 10 Hz components induced by non-target 
images stimulation, frequency band 2 needed to be given a larger 
weight. Figure 6D was the weight coefficients of each frequency band 
obtained by the CCCA method, and the frequency band 2 was given 

the maximum weight. The above results fully proved the effectiveness 
of the CCCA method for the common feature components extraction 
of multi-channel signals.

3.2 Analysis of feature components 
extraction effect of SSVEP signals based on 
the CCCA method

We also verified the CCCA method on the feature components 
extraction effect of multi-channel SSVEP, whose frequencies were 8 Hz, 
9 Hz, 10 Hz, 11 Hz, 12 Hz, 13 Hz, 14 Hz and 15 Hz with 1 s data length, 
filtered with a [2, 50] Hz band-pass filter. Figures 7A–C were the power 
spectrum of SSVEP feature components in the channels (O1, O2, OZ, PO3, 
PO4, POZ, PO5, and PO6) extracted by PCA, ICA, and CCCA using the 
data of subject 3, 4, and 6. The red dots in the figures marked the 
amplitude of the real frequency. As shown in Figure 7, the CCCA, PCA 
and ICA methods achieved the best feature components extraction effect 

Time (ms)

Time (ms)

Time (ms)

A
m

p
li

tu
d

e
A

m
p

li
tu

d
e

A
m

p
li

tu
d

e

PCAMulti-trial signal superposition averaging

ICAMulti-trial signal superposition averaging

CCCAMulti-trial signal superposition averaging

FIGURE 5

Feature components extraction results of multi-trial ERP of the same electrode.
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in subject 10, subject 6 and subject 4, respectively, which indicated that 
different subjects had individual differences, and one method cannot 
be applied to all subjects. Differences in physiological structures are likely 
to be one of the contributing factors to the disparities in individual 
electroencephalogram (EEG) signals. Specifically, variations exist among 
individuals with regard to the folding extent of the cerebral cortex, the 
depth of sulci and gyri, as well as the relative dimensions and 
configurations of diverse brain regions. These distinct characteristics 
exert a significant influence on the distribution and the patterns of 
interconnection among neurons. Consequently, discrepancies among 
individuals manifest themselves in the processes of EEG signal 
generation and conduction. When it comes to EEG signals themselves, 
individual differences can be observed in aspects such as the amplitude 
and frequency components of the signals.

We took the frequency corresponding to the highest amplitude 
value of the power spectrum as the criterion for determining whether 
it was the real stimulation frequency, and based on this, calculated the 
recognition accuracy rates of all subjects (except subject 5 whose data 
was damaged) in the dataset under the PCA, ICA, and CCCA 
methods. The results are presented in Table 1. As can be seen from the 
table, 12 subjects (marked with *) achieved the best recognition 
accuracy rates under the CCCA method. Specifically, for subject 26, 
the recognition accuracy rate of the CCCA method was higher than 
that of the PCA and ICA methods by 45.84 and 31.25%, respectively. 
For the remaining subjects in the dataset, the best recognition 
accuracy rates were obtained under the PCA or ICA method. 

Evidently, when the PCA and ICA methods fail to achieve ideal feature 
extraction effects on certain data, the CCCA method might yield 
better results. Therefore, for the feature components extraction of 
multi-channel SSVEP, CCCA method can form a good complement 
with PCA and ICA methods, becoming an important supplement 
when PCA and ICA fail.

4 Discussion

EEG corresponds to electrophysiological activity on the cerebral 
cortex or scalp’s surface and is widely used clinically to detect brain 
electrical activity. The accurate analysis of EEG signals is required for 
the effectiveness of this important diagnostic tool.

EEG signals are generally recorded as multi-channel time-varying 
data, as single-channel EEG cannot obtain information from multiple 
brain regions. Electrodes that respond best for different applications 
may vary due to differences in the surroundings or the shifting of 
electrodes, so it is difficult to obtain robust results using only a single 
electrode channel. Therefore, the analysis of multi-channel EEG 
signals is crucial for effective EEG research. With inevitable 
information redundancy in multi-channel EEG signals, signal-
processing methods must be used to identify active components and 
remove noise and redundancy. Both PCA and ICA methods are 
commonly used for multi-channel signal feature component 
extraction. PCA assumes that the source signals and noise are not 
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FIGURE 6

(A) The superposition average results of empirical wavelet decomposition of multi-channel EEG under target image stimulation, and (B) the weight 
coefficients of each frequency band solved by CCCA method. (C) The superposition average results of empirical wavelet decomposition of multi-
channel EEG under non-target image stimulation, and (D) the weight coefficients of each frequency band solved by CCCA method.
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statistically correlated, and ICA assumes for a statistical independence 
relationship of source signal and noise, so ICA generally performs 
considerably better than PCA. However, an additional step is required 
in ICA to select the useful components. Aiming to overcome the 

limitations of the existing analysis methods, we  developed a new 
method for multi-channel EEG feature component extraction.

The effective feature components are normally located in a specific 
frequency band, so we can extract them by giving larger weight to the 
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FIGURE 7

(A–C) The power spectrum of SSVEP feature components extracted by PCA, ICA and CCCA on subject 3, subject 4 and subject 6, respectively.

TABLE 1 The recognition accuracy rates of SSVEP features under the CCCA, PCA, and ICA methods.

Subject Accuracy Subject Accuracy

PCA ICA CCCA PCA ICA CCCA

S1 0.4375 0.2708 0.1875 S19 0.1667 0.2083 0.1250

S2 0.2708 0.1458 0.1458 S20 0.3542 0.1875 0.2500

S3 0.3750 0.3333 0.3333 S21 0.2083 0.1667 0.1667

S4 0.3542 0.3750 0.1458 S22 0.3333 0.4375 0.5833*

S6 0.3750 0.3125 0.2500 S23 0.1667 0.1667 0.1042

S7 0.1458 0.2500 0.2708* S24 0.3125 0.2500 0.3958*

S8 0.2708 0.2292 0.2292 S25 0.2083 0.5417 0.5625*

S9 0.1250 0.1250 0.1667* S26 0.2708 0.4167 0.7292*

S10 0.2708 0.3333 0.4167* S27 0.2500 0.2500 0.1458

S11 0.0833 0.1875 0.1250 S28 0.3333 0.1250 0.1875

S12 0.2292 0.3333 0.3333* S29 0.1042 0.2917 0.1458

S13 0.2917 0.2917 0.1667 S30 0.1875 0.1042 0.2083*

S14 0.6250 0.7083 0.6875 S31 0.6250 0.5208 0.4375

S15 0.2500 0.4167 0.6250* S32 0.4167 0.3333 0.3958

S16 0.2083 0.2292 0.1667 S33 0.1042 0.1458 0.1250

S17 0.5000 0.3750 0.2292 S34 0.5625 0.4167 0.6250*

S18 0.3750 0.3125 0.2083 S35 0.2292 0.3125 0.4167*
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feature band and smaller weight to the noise band after decomposing 
the signal into different frequency bands. Considering that the EWT 
can recognize the location of the feature information in the Fourier 
spectrum with a compactly supported wavelet filter, and adaptively 
extract different frequency components, each electrode channel signal 
in the multi-channel EEG is decomposed into different frequency 
bands through the EWT. Multi-channel EEG signals are collected at 
the same time, so each electrode channel contains signal components. 
Therefore, the signal components have a strong correlation between 
channels, while the noise components have a weak correlation. Based 
on this, the maximization of the covariance between the feature 
components extracted from each channel is taken as the optimization 
objective, and the weight coefficients corresponding to each frequency 
band are solved.

The traditional cross-trial average method is widely used to 
enhance the SNR of EEG in order to extract ERP components. 
However, the loss of lock-time non-lock-phase signals (such as event-
related synchronization or event-related desynchronization) will 
be caused by this method, and also the loss of cross-trial variation 
information of ERP (Mouraux and Iannetti, 2008). How to improve 
the SNR of single-trial ERP is a research project with remarkable 
attention. In this study, the superposition average results of multi-trial 
ERP was used as benchmarks, and the feature components extraction 
effects of PCA, ICA and CCCA method were compared on single-trial 
multi-channel ERP, which indicates that CCCA method could achieve 
the most similar extraction effect as the benchmarks. We also analyzed 
the feature components extraction effect of the CCCA method on the 
multi-trial ERP of the same electrode and the EEG signals induced by 
non-target image stimulation, which indicated that the CCCA method 
is superior to PCA and ICA methods. Besides, the extraction effects 
of PCA, ICA and CCCA methods were compared for multi-channel 
SSVEP signals. It was found that due to the existence of individual 
differences, one method was not suitable for all subjects. When PCA 
and ICA methods failed in some data analysis, the CCCA method may 
be effective and can be used as an important method supplement. 
We verified that the CCCA method could find the feature frequency 
band with strong correlation between EEG channels, so as to give it a 
large weight. By assigning appropriate weight coefficients to the 
frequency bands obtained by EWT, the common components in 
multi-channel EEG can be effectively extracted, which shows a good 
application prospect in multi-channel signal feature extraction.

The methodology put forward in this paper has exhibited 
favorable performance in extracting the ERP feature components 
from multi-channel signals within a single trial and also in extracting 
the ERP feature components from the signals of the same electrode 
channel across multiple trials. In forthcoming research endeavors, 
we  intend to apply this methodology to the online recognition 
within the brain-computer interface system based on rapid serial 
visual presentation (RSVP) (Zheng et al., 2020). Through precisely 
extracting the EEG ERP features triggered by target image stimuli, 
we  strive to accomplish the rapid and accurate recognition of 
target images.

5 Conclusion

To effectively remove the noise and information redundancy 
and extract the effective feature components in multi-channel 

EEG signals, a channel component correlation analysis method 
is proposed in the paper. First, each electrode signal of the multi-
channel EEG signal is decomposed into different frequency bands 
by the empirical wavelet transform. Then, through taking the 
maximization of the covariance of the feature components 
extracted from each channel as the optimization goal, the feature 
frequency bands with strong correlation are given a larger weight, 
while the feature frequency bands with weak correlation are given 
a smaller weight, so as to extract the common components in the 
multi-channel EEG. Compared with PCA and ICA methods, the 
excellent performance of CCCA method in multi-dimensional 
signal feature components extraction shows great application and 
research value.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be  found below: https://doi.org/10.6084/
m9.figshare.12824771.v1.

Ethics statement

The data used in this article comes from a public dataset, and the 
corresponding dataset has already obtained the approval of the Ethics 
Committee of Tsinghua University.

Author contributions

WY: Funding acquisition, Writing  – original draft. QL: Data 
curation, Formal analysis, Writing  – review & editing. CD: 
Visualization, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by the State Key Laboratory of Robotics under grant 2023-021, the Key 
Research and Development Program of Shaanxi (program no. 
2024GX-YBXM-119), and the National Natural Science Foundation 
of China (NSFC) (no. 52475311).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

https://doi.org/10.3389/fnins.2025.1522964
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.6084/m9.figshare.12824771.v1
https://doi.org/10.6084/m9.figshare.12824771.v1


Yan et al. 10.3389/fnins.2025.1522964

Frontiers in Neuroscience 11 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 

or those of the publisher, the editors and the reviewers. Any 
product that may be  evaluated in this article, or claim that may 
be  made by its manufacturer, is not guaranteed or endorsed by 
the publisher.

References
Anumanchipalli, G. K., Chartier, J., and Chang, E. F. (2019). Speech synthesis from 

neural decoding of spoken sentences. Nature 568, 493–498. doi: 10.1038/ 
s41586-019-1119-1

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach to 
blind separation and blind deconvolution. Neural Comput. 7, 1129–1159. doi: 
10.1162/neco.1995.7.6.1129

Cardoso, J. F. (1997). Infomax and maximum likelihood for source separation. IEEE 
Signal Process. Lett. 4, 112–114. doi: 10.1109/97.566704

Dockree, P. M., Barnes, J. J., Matthews, N., Dean, A. J., Abe, R., Nandam, L. S., et al. 
(2017). The effects of methylphenidate on the neural signatures of sustained attention. 
Biol. Psychiatry 82, 687–694. doi: 10.1016/j.biopsych.2017.04.016

Edelman, B. J., Meng, J., Suma, D., Zurn, C., Nagarajan, E., Baxter, B. S., et al. (2019). 
Noninvasive neuroimaging enhances continuous neural tracking for robotic device 
control. Sci. Robot. 4:eaaw6844. doi: 10.1126/scirobotics.aaw6844

Feng, L., Li, Z. C., and Zhang, J. (2020). Fast automated on-chip artefact removal of 
eeg for seizure detection based on Ica-r algorithm and wavelet denoising. IET Circ. 
Device. Syst. 14, 547–554. doi: 10.1049/iet-cds.2019.0491

Gilles, J. (2013). Empirical wavelet transform. IEEE T. Signal Proces. 61, 3999–4010. 
doi: 10.1109/TSP.2013.2265222

Hamilton, H. K., Roach, B. J., Bachman, P. M., Belger, A., Carrion, R. E., Duncan, E., 
et al. (2019). Association between P300 responses to auditory oddball stimuli and 
clinical outcomes in the psychosis risk syndrome. JAMA Psychiat. 76, 1187–1197. doi: 
10.1001/jamapsychiatry.2019.2135

Heelan, C., Lee, J., O’Shea, R., Lynch, L., Brandman, D. M., Truccolo, W., et al. (2019). 
Decoding speech from spike-based neural population recordings in secondary auditory 
cortex of non-human primates. Commun. Biol. 2:466. doi: 10.1038/s42003-019-0707-9

Kubanek, J., Brown, J., Ye, P., Pauly, K. B., Moore, T., and Newsome, W. (2020). 
Remote, brain region–specific control of choice behavior with ultrasonic waves. Sci. Adv. 
6:pp. eaaz4193. doi: 10.1126/sciadv.aaz4193

Lee, T. W., Girolami, M., and Sejnowske, T. J. (1999). Independent component analysis 
using an extended infomax algorithm for mixed sub-gaussian and supergaussian 
sources. Neural Comput. 11, 417–441. doi: 10.1162/089976699300016719

Martínez, A., Tobe, R., Dias, E. C., Ardekani, B. A., Veenstra-VanderWeele, J., Patel, G., 
et al. (2019). Differential patterns of visual sensory alteration underlying face emotion 

recognition impairment and motion perception deficits in schizophrenia and autism 
Spectrum disorder. Biol. Psychiatry 86, 557–567. doi: 10.1016/j.biopsych.2019.05.016

Mouraux, A., and Iannetti, G. D. (2008). Across-trial averaging of event-related eeg 
responses and beyond. Magn. Reson. 26, 1041–1054. doi: 10.1016/j.mri.2008.01.011

Rahman, M. A., Hossain, M. F., Hossain, M., and Ahmmed, R. (2020). Employing pca 
and t-statistical approach for feature extraction and classification of emotion from 
multichannel eeg signal, Egypt. Inform. J. 21, 23–35. doi: 10.1016/j.eij.2019.10.002

Rahman, M. A., Khanam, F., Kazem, M., Khurshed, M., and Ahmad, M. (2019). Four-
class motor imagery eeg signal classification using pca, wavelet and two-stage 
neural network. Int. J, Adv. Comput. Appl. 10, 481–490. doi: 10.14569/IJACSA. 
2019.0100562

Tokariev, A., Roberts, J. A., Zalesky, A., Zhao, X. L., Vanhatalo, S., Breakspear, M., et al. 
(2019). Large-scale brain modes reorganize between infant sleep states and carry 
prognostic information for preterms. Nat. Commun. 10:2619. doi: 10.1038/s41467- 
019-10467-8

Wang, Y., Chen, X., Gao, X., and Gao, S. (2017). A benchmark dataset for SSVEP-
based brain-computer interfaces. IEEE Trans. Rehabil. Eng. 25, 1746–1752. doi: 
10.1109/TNSRE.2016.2627556

Wessel, J. R., Jenkinson, N., Brittain, J. S., Voets, S. H. E. M., Aziz, T. Z., and Aron, A. R. 
(2016). Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism. 
Nat. Commun. 7:11195. doi: 10.1038/ncomms11195

Yan, W., Xu, G., Xie, J., Li, M., and Dan, Z. (2018). Four novel motion paradigms based 
on steady-state motion visual evoked potential. IEEE T. Biomed. Eng. 65, 1696–1704. 
doi: 10.1109/TBME.2017.2762690

Yang, H., and Amari, S. (1997). Adaptive online learning algorithms for blind 
separation: maximum entropy and minimum mutual information. Neural Comput. 9, 
1457–1482. doi: 10.1162/neco.1997.9.7.1457

Zheng, L., Sun, S., Zhao, H., Pei, W., and Wang, Y. (2020). A cross-session dataset for 
collaborative brain-computer interfaces based on rapid serial visual presentation. Front. 
Neurosci. 14:579469. doi: 10.3389/fnins.2020.579469

Zhua, Y., Zhanga, C., Toiviainenc, P., Huotilainend, M., Mathiake, K., Ristaniemi, T., 
et al. (2020). Exploring frequency-dependent brain networks from ongoing eeg using 
spatial Ica during music listening. Brain Topogr. 33, 289–302. doi: 10.1007/s10548- 
020-00758-5

https://doi.org/10.3389/fnins.2025.1522964
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://doi.org/10.1038/s41586-019-1119-1
https://doi.org/10.1038/s41586-019-1119-1
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1109/97.566704
https://doi.org/10.1016/j.biopsych.2017.04.016
https://doi.org/10.1126/scirobotics.aaw6844
https://doi.org/10.1049/iet-cds.2019.0491
https://doi.org/10.1109/TSP.2013.2265222
https://doi.org/10.1001/jamapsychiatry.2019.2135
https://doi.org/10.1038/s42003-019-0707-9
https://doi.org/10.1126/sciadv.aaz4193
https://doi.org/10.1162/089976699300016719
https://doi.org/10.1016/j.biopsych.2019.05.016
https://doi.org/10.1016/j.mri.2008.01.011
https://doi.org/10.1016/j.eij.2019.10.002
https://doi.org/10.14569/IJACSA.2019.0100562
https://doi.org/10.14569/IJACSA.2019.0100562
https://doi.org/10.1038/s41467-019-10467-8
https://doi.org/10.1038/s41467-019-10467-8
https://doi.org/10.1109/TNSRE.2016.2627556
https://doi.org/10.1038/ncomms11195
https://doi.org/10.1109/TBME.2017.2762690
https://doi.org/10.1162/neco.1997.9.7.1457
https://doi.org/10.3389/fnins.2020.579469
https://doi.org/10.1007/s10548-020-00758-5
https://doi.org/10.1007/s10548-020-00758-5

	Channel component correlation analysis for multi-channel EEG feature component extraction
	1 Introduction
	2 Methods and materials
	2.1 Empirical wavelet transform
	2.2 Channel component correlation analysis
	2.3 The data used in this study

	3 Results
	3.1 Analysis of the feature components extraction effect on ERP signals based on CCCA
	3.1.1 Layer selection of empirical wavelet transform decomposition
	3.1.2 Analysis of the feature components extraction effect of single-trial ERP
	3.1.3 Analysis of the feature components extraction effect of multi-trial ERP of the same electrode
	3.1.4 Analysis of common feature components extraction effect of multi-channel EEG based on the CCCA method
	3.2 Analysis of feature components extraction effect of SSVEP signals based on the CCCA method

	4 Discussion
	5 Conclusion

	References

