The final, formatted version of the article will be published soon.
ORIGINAL RESEARCH article
Front. Neurorobot.
Volume 18 - 2024 |
doi: 10.3389/fnbot.2024.1504070
This article is part of the Research Topic Multi-source and Multi-domain Data Fusion and Enhancement: Methods, Evaluation, and Applications View all 5 articles
FusionU10: Enhancing Pedestrian Detection in Low-Light Complex Tourist Scenes through Multimodal Fusion
Provisionally accepted- 1 Guangzhou College of Commerce, Guangzhou, China
- 2 Guangdong University of Technology, Guanzhou, China
- 3 Lingnan University, Tuen Mun, Hong Kong, SAR China
With the rapid development of tourism, the concentration of visitor flows poses significant challenges for public safety management, especially in low-light and highly occluded environments, where existing pedestrian detection technologies often struggle to achieve satisfactory accuracy. Although infrared images perform well under low-light conditions, they lack color and detail, making them susceptible to background noise interference, particularly in complex outdoor environments where the similarity between heat sources and pedestrian features further reduces detection accuracy. To address these issues, this paper proposes the FusionU10 model, which combines information from both infrared and visible light images.The model first incorporates an Attention Gate mechanism (AGUNet) into an improved UNet architecture to focus on key features and generate pseudo-color images, followed by pedestrian detection using YOLOv10. During the prediction phase, the model optimizes the loss function with Complete Intersection over Union (CIoU), objectness loss (obj loss), and classification loss (cls loss), thereby enhancing the performance of the detection network and improving the quality and feature extraction capabilities of the pseudo-color images through a feedback mechanism.Experimental results demonstrate that FusionU10 significantly improves detection accuracy and robustness in complex scenes on the FLIR, M3FD, and LLVIP datasets, showing great potential for application in challenging environments.
Keywords: pedestrian detection, Infrared and visible light, FusionU10 Model, YOLOv10, AGUNet
Received: 30 Sep 2024; Accepted: 27 Nov 2024.
Copyright: © 2024 Zhou, Li and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Xuefan Zhou, Guangzhou College of Commerce, Guangzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.