Skip to main content

ORIGINAL RESEARCH article

Front. Mol. Biosci.
Sec. Molecular Diagnostics and Therapeutics
Volume 11 - 2024 | doi: 10.3389/fmolb.2024.1467398

Proteomics analysis of extracellular vesicles for biomarkers of autism spectrum disorder

Provisionally accepted
  • 1 Qatar Biomedical Research Institute, Hamad bin Khalifa University, Doha, Qatar
  • 2 Hamad bin Khalifa University, Doha, Qatar

The final, formatted version of the article will be published soon.

    Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by symptoms that include social interaction deficits, language difficulties and restricted, repetitive behavior. Early intervention through medication and behavioral therapy can eliminate some ASD-related symptoms and significantly improve the life-quality of the affected individuals. Currently, the diagnosis of ASD is highly limited.To investigate the feasibility of early diagnosis of ASD, we tested extracellular vesicles (EVs) proteins obtained from ASD cases. First, plasma EVs were isolated from healthy controls (HCs) and ASD individuals and were analyzed using proximity extension assay (PEA) technology to quantify 1,196 protein expression level. Second, machine learning analysis and bioinformatic approaches were applied to explore how a combination of EV proteins could serve as biomarkers for ASD diagnosis.Results No significant differences in the EV morphology and EV size distribution between HCs and ASD were observed, but the EV number was slightly lower in ASD plasma. We identified the top five downregulated proteins in plasma EVs isolated from ASD individuals: WW domain-containing protein 2 (WWP2), Heat shock protein 27 (HSP27), C-type lectin domain family 1 member B (CLEC1B), Cluster of differentiation 40 (CD40), and folate receptor alpha (FRalpha). Machine learning analysis and correlation analysis support the idea that these five EV proteins can be potential biomarkers for ASD.We identified the top five downregulated proteins in ASD EVs and examined that a combination of EV proteins could serve as biomarkers for ASD diagnosis.

    Keywords: Extracellular vesicle, biomarker, Olink, autism, ASD

    Received: 19 Jul 2024; Accepted: 24 Oct 2024.

    Copyright: © 2024 Park, Ali Moussa, Shin, de la Fuente, Bensmail, Abdesselem, Ponraj, Alshaban, Stanton, Abdulla and Mansour. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Yongsoo Park, Qatar Biomedical Research Institute, Hamad bin Khalifa University, Doha, Qatar

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.