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Proteomics analysis of
extracellular vesicles for
biomarkers of autism spectrum
disorder
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Janarthanan Ponraj3, Said Mansour3, Fouad A. Al-Shaban1,4,
Lawrence W. Stanton1,4, Sara A. Abdulla1* and Yongsoo Park1,4*
1Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin
Khalifa University (HBKU), Qatar Foundation, Doha, Qatar, 2Proteomics Core Facility, Hamad Bin
Khalifa University (HBKU), Qatar Foundation, Doha, Qatar, 3HBKU Core Labs, Hamad Bin Khalifa
University (HBKU), Doha, Qatar, 4College of Health and Life Sciences (CHLS), Hamad Bin Khalifa
University (HBKU), Qatar Foundation, Doha, Qatar

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder
characterized by symptoms that include social interaction deficits, language
difficulties and restricted, repetitive behavior. Early intervention through
medication and behavioral therapy can eliminate some ASD-related symptoms
and significantly improve the life-quality of the affected individuals. Currently,
the diagnosis of ASD is highly limited.

Methods: To investigate the feasibility of early diagnosis of ASD, we tested
extracellular vesicles (EVs) proteins obtained from ASD cases. First, plasma
EVs were isolated from healthy controls (HCs) and ASD individuals and were
analyzed using proximity extension assay (PEA) technology to quantify 1,196
protein expression level. Second, machine learning analysis and bioinformatic
approaches were applied to explore how a combination of EV proteins could
serve as biomarkers for ASD diagnosis.

Results:No significant differences in the EVmorphology and EV size distribution
between HCs and ASD were observed, but the EV number was slightly
lower in ASD plasma. We identified the top five downregulated proteins in
plasma EVs isolated from ASD individuals: WW domain-containing protein
2 (WWP2), Heat shock protein 27 (HSP27), C-type lectin domain family
1 member B (CLEC1B), Cluster of differentiation 40 (CD40), and folate

Abbreviations:ASD, Autism spectrumdisorder; AFM, Atomic forcemicroscopy; AD, Alzheimer’s disease;
ADHD, Attention-deficit hyperactivity disorder; BBB, Blood-brain barrier; CLEC1B, C-type lectin domain
family 1 member B; CD40, Cluster of differentiation 40; DSM-5, Diagnostic and Statistical Manual
of Mental Disorders, Fifth Edition; EVs, Extracellular vesicles; Fralpha, Folate receptor alpha; FC,
Fold change; GO, Gene Ontology; HCs, Healthy controls; HSP27, Heat shock protein 27; MUVR,
Minimally biased variable selection in R; NTA, Nanoparticle tracking analysis; NPX, Normalized Protein
eXpression; PAR1, Protease-activated receptor-1; PEA, Proximity extension assay; SEC, Size exclusion
chromatography; SVM, Support vector machines; TopDEPs, Top differentially expressed proteins;
VSURF, Variable selection using random forests; WWP2, WW domain-containing protein 2.
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receptor alpha (FRalpha). Machine learning analysis and correlation analysis
support the idea that these five EV proteins can be potential biomarkers
for ASD.

Conclusion: We identified the top five downregulated proteins in ASD EVs and
examined that a combination of EV proteins could serve as biomarkers for ASD
diagnosis.

KEYWORDS

extracellular vesicle, biomarker, Olink, autism, ASD

1 Introduction

Autism spectrum disorder (ASD) is a complex
neurodevelopmental condition, characterized by stereotyped
repetitive behaviors and communication deficits (American 
Psychiatric Association, 2013). An increasing number of genetic
variants implicated in ASD have been reported, suggesting a high
degree of locus heterogeneity and contributions from rare and de
novo variants (State and Levitt, 2011). Comorbidity is common
in ASD, including attention-deficit hyperactivity disorder (ADHD)
and epilepsy (Carter and Scherer, 2013). One of themajor challenges
inASD research is to find reliable biomarkers that can helpwith early
detection of ASD.Although some genetic factors have been linked to
ASD risk, there is no definitive or consistent biomarker for ASD yet.

EVs are a group of vesicles surrounded by a lipid bilayer
and are secreted by almost all cell types (Mulcahy et al., 2014).
They mediate intercellular communication by transferring their
contents horizontally (Veziroglu and Mias, 2020). EVs have critical
functions in health and disease and offer potential clinical value
as new biomarkers for early detection and therapeutic targets
for treatment (Trino et al., 2021). EVs can cross the blood-brain
barrier (BBB) (Alvarez-Erviti et al., 2011; Saeedi et al., 2019;
Chen et al., 2016), there by circulating through the bloodstream.
Since EVs mirror the cell and tissue of origin in terms of disease
outcome and severity, their contents can serve as non-invasive
biomarkers for various diseases (Trino et al., 2021; Huo et al.,
2021) and plasma EVs can be used as biomarkers of neurological
disorders (Ali Moussa et al., 2022).

EV proteins are promising liquid biopsy targets for early
detection of Parkinson’s disease, as their profiles change in disease
conditions (Kitamura et al., 2018). Three plasma EV proteins
(clusterin, complement C1r subcomponent, and apolipoprotein
A1) could serve as diagnostic biomarkers for Parkinson’s disease,
and the expression of EV proteins is associated with disease
progression (Kitamura et al., 2018). Plasma EV proteins could
also help distinguish Alzheimer’s disease (AD) patients from
healthy controls (Cai et al., 2022). However, no specific EV protein
biomarkers have been yet identified for ASD.

In this study, we used size exclusion chromatography (SEC)
to isolate EVs from the plasma of healthy controls (HCs) and
ASD cases from Qatari and non-Qatari individuals living in
Qatar. We then applied the proximity extension assay (PEA)
Olink platform to analyze the EV proteome profiles. We
identified the top five downregulated proteins in plasma EVs
isolated from ASD cases and examined that a combination
of EV proteins could serve as biomarkers for ASD diagnosis.

2 Materials and methods

2.1 Study cohort and blood collection

All procedures were performed under the approval of the
Institutional Review Board (IRB# 2018-024) of Qatar Biomedical
Research Institute (QBRI). The study cohort was obtained from
QBRI’s Interdisciplinary Research Program (IDRP) depository and
included plasma samples from 81ASD and 26 healthy control (HCs)
individuals, all residing in Qatar. The communication and social
skills for the HCs were evaluated using the Social Communication
Questionnaire (SCQ). ASD individuals were clinically diagnosed
using the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5) criteria. Written informed consent and
assent were obtained from all the HCs, ASD individuals and
their surrogates. Demographical information of the participants
is summarized in Table 1. Human peripheral blood samples
were drawn from the HCs and ASD individuals into EDTA
tubes. In the processing of blood samples, blood components
were separated using density gradient centrifugation as previously
described (Ali Moussa et al., 2022). The plasma supernatant was
further centrifuged for 15 min to remove platelets and blood cells to
obtain platelet-free plasma, whichwas aliquoted and stored at −80°C
until further use for EV isolation.

2.2 Extracellular vesicles isolation

EVs were isolated from 250 µL of human plasma by size
exclusion chromatography (SEC) using the qEVOriginal/35 nm
columns (SP5, Izon Science, Christchurch, New Zealand). The
plasma was thawed on ice and diluted with PBS for a final volume of
500 µL. It was then centrifuged at 3,000 g for 10 min and 10,000 g
for 30 min to remove cell debris and large vesicles, followed by

TABLE 1 Participants’ demographical information.

ASD cases Healthy controls
(HCs)

Number of participants N = 81 N = 26

Age (Mean ± SD) 8.56 ± 2.17 11.08 ± 2.20

Gender (F/M) 17/64 13/13

ADOS-2 scores (Mean ±
SD)

3.77 ± 1.7 —
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purification on the SEC columns. Fractions 1-25, including void
volumewere collected for some samples to verify the particle/protein
profile. For the remaining samples, the void volume was discarded
and only the high particle/low protein fractions were collected.
EV-enriched fractions 2 and 3 with total volume of 1 mL were
pooled and concentrated using pre-conditioned 100 kDa Amicon
Ultra-15 centrifuge filters (UFC9100, Millipore) to a final volume
of 170 µL. The amount of EV proteins was estimated by measuring
the absorbance at 280 nm (A280). EV samples were aliquoted
to minimize the freeze-thaw cycles and stored at −80°C until
further analyzed.

2.3 Nanoparticle tracking analysis (NTA)

Particle size and particle number were determined using
nanoparticle tracking analysis (NTA) (ZetaView, Particle Metrix,
Germany). EV samples were diluted with filtered PBS to an average
of 100 particles per frame and a final volume of 1 mL. Zetaview
software (version 8.04.02 SP2) recorded particles at 11 camera
positions and 30 frames per second.

2.4 Transmission electron microscopy
(TEM)

Five microliter of EV suspension was deposited on carbon-
coated 400-mesh copper grids (CF400-CU, Electron Microscopy
Sciences) and incubated for 10 min. The EVs were then washed
with ddH2O and excess fluid was absorbed with filter paper.
Grids were negatively stained with uranyl acetate and embedded
in methylcellulose-uranyl acetate. EVs were examined at 80 kV in
Talos F200C Transmission Electron Microscope (Thermo Fisher
Scientific). The images were acquired using bottom-mounted
CETA camera.

2.5 Olink proximity extension assay

Protein profiling of EV samples was carried out using
the proximity extension assay (PEA) from the Olink Target
96, testing a total of 1,196 proteins (13 panels including
Neurology, Development, Neuro-exploratory, Inflammation,
Immune Response, Cell Regulation, Organ Damage, Metabolism,
Oncology II, Oncology III, Cardiometabolic, Cardiovascular II,
and Cardiovascular III; Olink Bioscience, Uppsala, Sweden). A
total of 1–10 × 107 EV particles were subjected to each panel
for PEA analysis. Following the standard protocol, the runs were
performed by Olink-certified proteomics core facility at QBRI and
were all validated by the Olink support team in Uppsala, Sweden.
PEA is an ultrasensitive technology based on dual recognition of
target proteins through matched pairs of antibodies labeled with
DNA oligonucleotides (Assarsson et al., 2014). Quality control
and data normalization were carried out using the Normalized
Protein eXpression (NPX) software. Protein expression values were
calculated as NPX; NPX is an arbitrary unit by Olink to quantify
protein expression level on a log2 scale. Olink data that did not pass
quality control were excluded from the analyses. NPX is a relative

quantification unit that reflects the abundance of proteins in the
sample and allows for comparison across different samples and
conditions.

In the Olink assay, when two antibody pairs bind to their
respective target protein, their attached oligonucleotides come
into proximity, allowing a DNA polymerase to extend the
oligonucleotides, forming a unique sequence. This sequence is then
amplified and quantified using qPCR. The qPCR step produces
a cycle threshold (Ct) value, which indicates the number of
amplification cycles required to detect the target. A lower Ct
value means higher protein concentration because fewer cycles are
needed to reach the detection threshold. To ensure consistency
across multiple plates, an internal control called the Interplate
Control (IPC) is used. This helps to normalize Ct values across
different plates, compensating for any technical variation between
runs. The NPX value is calculated by taking the negative log2
transformation of the normalized Ct values. This transformation
turns the relative quantification into amore interpretable scalewhere
higher NPX values correspond to higher protein concentrations.
NPX is expressed as follows.

NPX = −log2 (NormalizedCt)

This conversion ensures that higher NPX values correspond to
higher protein abundances, making it easier to compare protein
levels across different samples.

2.6 Bioinformatics

Theanalysis for EV characterization experiments was conducted
using GraphPad Prism software. Statistical analysis for proteomics
data was performed using R software. Differentially expressed
proteins were identified using the Limma (Linear Models for
Microarray Data) package in R. Given the differences in the amount
of EVs across samples, NPX of Olink data was normalized by
incorporating EV particle numbers of each sample as a covariate
in the linear model during statistical analysis to ensure accurate
protein quantification. The model was designed to remove any bias
introduced by different EV particle numbers.

The p-values of all the proteins were adjusted for multiple
testing using the Benjamini–Hochberg (BH)method.The analytical
model accounted for EVparticle counts as influential covariates. Top
differentially expressed proteins (TopDEPs) were selected based on
a dual criterion: a fold change (FC ≥ 2) and a BH-adjusted p-value
(adj p-value ≤ 0.05).

For Gene Ontology (GO) Enrichment Analysis, the R library
clusterProfiler was used with focus on Cellular Components and
Biological Process, and enrichedGO termspassing adjusted p-values
< 0.05 were identified. For Machine Learning, variable selection was
performed using the MUVR, Boruta, and VSURF R packages, all
set to their default parameters for optimal performance. The MLR3
library served as the foundation for training and evaluating an array
of methods through repeated 4-fold cross validation. The MLR3
library also provides a function to create an ROC curve averaged
over all validation folds and calculate the 95% Confidence Interval.
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3 Results

3.1 Study cohort characteristics

We recruited 109 participants for our study, consisting of 81
ASD cases and 26 healthy controls (HCs) who were aged between
6 and 15 years. The mean ages for ASD cases and HCs were 8.56
± 2.17 and 11.08 ± 2.20, respectively (Table 1). The HC group
had an equal proportion of males and females (50%); however,
the ASD group had a higher percentage of males (79%) due to
the male predominance of ASD, which can be as high as 4:1
(Maenner et al., 2020). All ASD cases had a clinical diagnosis of
ASD based on DSM-5 criteria and were evaluated using the ADOS-
2 score. Table 1 shows the demographical information of ASD cases
and HCs.

3.2 Characterization of EVs isolated from
blood plasma of ASD and HCs

We have optimized the protocol of plasma EV isolation using
size exclusion chromatography (SEC), as previously described
(Ali Moussa et al., 2022). The larger molecules elute first from the
SEC column, followed by EVs, and plasma protein complexes are
the last to elute (Figures 1A, B). We measured the particle number
of EVs in each fraction by using nanoparticle tracking analysis
(NTA). We combined fractions 2 and 3 as EV samples for higher
purity, and also monitored the absorbance at 280 nm for protein
elution profiles (Figures 1A, B); we used 0.25 mL plasma for this
study. We confirmed that abundant plasma proteins are removed
from EV samples to improve the purity (Ali Moussa et al., 2022)
and soluble protein elution increases sharply from fraction 5; the
elution profiles of EVs and plasma proteins obtained by SEC did not
reveal any differences between HCs and ASD cases (Figures 1A, B).
We then further analyzed the EV samples from
fractions 2 and 3.

The plasma EVs were measured by NTA to determine their
size distribution. The results showed that the plasma EVs from
HCs and ASD had similar sizes, ranging from 50 to 200 nm; mean
diameter (nm) of 121.3 ± 40.32 SD for HCs and 120.3 ± 40.53 SD for
ASD (Figures 1C, D). Intriguingly, the number of EV particles was
reduced in ASD plasma samples (Figure 1E), while the plasma
protein concentration was similar between HCs and ASD samples
(Figure 1F); total plasma proteins eluted in fractions 10 and 11 were
measured based on absorbance at 280 nm. The median diameter
of EVs did not differ between HCs and ASD (Figure 1G). The
structure of HCs- and ASD-derived EVs characterized by atomic
force microscopy (AFM) was comparable (Figure 1H). Overall,
these data suggest that there were no significant differences in the
morphology and size distribution, but the EV number was lower in
ASD plasma.

3.3 EV protein profiling using the Olink
platform

Olink analysis of 1,196 proteins demonstrated a distinct plasma
EVs protein expression profile in individuals with ASD compared

to HCs (see Method section for details). Differentially expressed
proteinswere identified using Limmapackage inR. Since the particle
numbers of EVs in ASD plasma are slightly reduced (Figure 1E),
a direct comparison of protein levels between HC and ASD
EVs could be biased. Therefore, we normalized protein levels
to account differences in the amount of EVs across samples to
ensure accurate protein quantification. EV particle numbers for each
sample were incorporated as a covariate in the linear model used
for statistical analysis. This approach was implemented to eliminate
potential bias arising from variations in EV particle counts across
samples.

A list of the top differentially expressed proteins (TopDEPs)
was summarized with a BH-adjusted p-value < 0.05 and
fold change (FC) ≥ 2. A total of five downregulated proteins
in ASD EVs were listed in the TopDEPs; no proteins were
upregulated in ASD EVs (Figure 2A). Further details of all the
significantly downregulated proteins are listed in Table 2. Top
five downregulated proteins include WW domain-containing
protein 2 (WWP2), Heat shock protein 27 (HSP27), C-type
lectin domain family 1 member B (CLEC1B), Cluster of
differentiation 40 (CD40), and folate receptor alpha (FRalpha)
(Figure 2B).

To further validate and characterize EVs, we analyzed CD63,
a well-established marker protein for endosome-derived exosomes
(Mathieu et al., 2021). While various tetraspanins, including
CD9, CD63, and CD81, serve as general markers for EVs
(Kowal et al., 2016), it is important to note that CD9 and
CD81 are also present in ectosomes, which bud directly from the
plasma membrane (Mathieu et al., 2021). Our previous findings
indicated that >95% of plasma EV samples were positive for
CD63, supporting that the majority of these EVs are indeed
exosomes (Ali Moussa et al., 2022). In the current study, CD63
was included in the Olink proteomics panel, and expression
level (NPX) of CD63 was high and comparable between HCs
and ASD EV samples, with no significant differences observed
(Figure 2C).

3.4 Gene ontology enrichment analysis of
TopDEPs

We performed Gene Ontology (GO) enrichment
analysis of TopDEPs to evaluate functional annotation of
these downregulated proteins in ASD EVs. The cellular
components in GO analysis only included external side of
plasma membrane (Figure 2D), supporting that TopDEPs are
derived from EVs. Top five significantly downregulated proteins
are associated with EVs and can be potential biomarkers for
ASD (see Discussion); WWP2, HSP27, CLEC1B, CD40, and
FRalpha.

Next, we performed GO enrichment analysis of TopDEPs
to identify the biological processes that were significantly
dysregulated in ASD EVs (Figure 2E). We sorted the enriched
biological terms by counts, which represent numbers of
proteins associated with each term. The immune responses
including inflammation and cytokine production were
affected by downregulated proteins in ASD EVs (Figure 2E),
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FIGURE 1
Characterization of plasma EVs isolated from healthy control (HC) and ASD individuals. (A, B) Representative elution profiles of plasma EVs and plasma
proteins from HC (A) and ASD individuals (B). EVs are the first to elute, followed by smaller protein complexes. Fractions 2 and 3 were pooled together
as EV samples. EV particle numbers and protein concentration in each fraction were determined by NTA and the absorbance at a wavelength of
280 nm, respectively. (C, D) Representative size distribution of plasma EVs determined by NTA. Mean diameter (nm), 121.3 ± 40.32 SD for HC and 120.3
± 40.53 SD for ASD. (E) EV particle numbers analyzed using NTA; HCs (n = 26) and ASD (n = 81). (F) Plasma protein concentration of HCs (n = 9) and
ASD (n = 18). Total plasma proteins eluted in fractions 10 and 11 were measured based on absorbance at 280 nm. (G) Violin plots showing statistical
median diameter (X50, nm) of EVs isolated from HC (n = 26) and ASD (n = 81) plasma; 117.6 nm ± 13.99 SD for HC and 126.1 nm ± 13.51 SD for ASD. (H)
Morphological characterization of HC and ASD EVs using negative-stain transmission electron microscopy (TEM). Data in (E, F) are means ± SEM.
Unpaired two-tailed t-test was used;∗∗, p < 0.01.

implying that ASD EVs might be associated with immune
dysregulation.

3.5 Machine learning to identify potential
biomarkers

To further demonstrate potential biomarkers for ASD, we
applied machine learning algorithms including minimally biased
variable selection in R (MUVR), Boruta, and variable selection
using random forests (VSURF) (Figure 3). We used three different
feature selection methods to identify the most potential proteins
for predicting the outcome, and then compared the performance of
different classification algorithms. Six proteins overlapped between
MUVR and Boruta, and four proteins were among MUVR, Boruta,
and VSURF: WWP2, CD40, PAR1, FRalpha, CLEC1B, and HSP27
(Figure 3A). Details of six proteins are listed in Table 2; note that
five out of these six proteins were also found to from the list of
TopDEPs.

The diagnostic performance was tested using multiple
multivariant supervised machine learning algorithms (random
forest, generalized linear model, and support vector machines
(SVM)). Six proteins were internally validated with four-fold cross-
validations and 100 repeats (Figures 3B, C). The average ROC curve
suggested that six proteins are strong candidates for diagnostic
biomarkers for ASD with average AUC = 0.923, accuracy = 86.3%,
sensitivity = 95.3%, specificity = 66.2% (Figure 3C).

4 Discussion

ASD affects approximately 1% of the global population,
creating a significant public health burden in different communities
including Qatar. According to our QBRI study on ASD
(Alshaban et al., 2019), the prevalence of ASD in Qatar is
1.14% (one in every 87 children), leading to the financial
burden and stress on parents and caregivers. Early intervention,
whether through medication or behavioral therapy, can alleviate
some ASD-related symptoms, significantly improving the
life-quality of the affected individuals (Rogers et al., 2014;
Dawson et al., 2012; Zwaigenbaum et al., 2009). Currently, early
detection and intervention of ASD are highly limited and there are
no medical kits or blood tests available for ASD diagnosis. Medical
doctors can only check the child’s behavior and development to
make a diagnosis of ASD, thereby limiting early intervention of
ASD until kids become at least 4 or 5 years old. Early intervention
and detection are critical to help ASD children effectively improve
their language ability and social interaction.

In the literature, several genetic variants have been proposed as
promising biomarkers for ASD (Nahas et al., 2024). Yet, because of
the numerous gene mutations, ASD is extremely heterogenous and
cannot be defined by unique polymorphisms. Other studies have
identified differences in themicrobiota andmetabolic, immune, and
nutritionalmarkers, between control andASD individuals (Lin et al.,
2023; Chen et al., 2021; Edmiston et al., 2017). These potential
biomarkers are all yet to be confirmed by large validation studies
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FIGURE 2
Differential expression of EV proteins. (A) The volcano plot of the differentially expressed (DE) proteins in plasma EVs isolated from HCs and ASD cases;
log2 fold change (FC) against Limma −log10 BH-adjusted p-value. Color indicates significantly upregulated (red) and downregulated (blue) proteins with
FC ≥ 2 and adjusted p-value < 0.05. (B, C) Box plots of the expression level presented as Olink’s normalized protein expression (NPX) for EV proteins (B)
and CD63 (C) from control (n = 26) and ASD (n = 60). (B) Only five proteins are significantly downregulated with FC ≥ 2 and adjusted p-value < 0.05. (D)
Gene Ontology (GO) enrichment analysis for cellular components of downregulated proteins in ASD EVs. The GO cut-off criteria included adjusted
p-value < 0.05 and FC ≥ 1.5. (E) GO enrichment analysis for biological process of dysregulated proteins in ASD EVs. The GO cut-off criteria included q
(adjusted p value) < 0.05 and 1.5 FC.

TABLE 2 Predictive proteins using MUVR, Boruta, and VSURF.

Rank Protein symbol Protein full name Gini impurity score Fold change (FC) Adjusted p-value

1 WWP2 WW domain containing E3
ubiquitin protein ligase 2

0.204 ↓ 1.55 1.80 × 10−7

2 CD40 CD40 molecule 0.221 ↓ 1.73 1.00 × 10−5

3 CLEC1B C-type lectin domain family 1
member B

0.239 ↓ 1.73 2.23 × 10−6

4 PAR1 Protease-activated receptor-1 0.257 ↓ 0.66 1.51 × 10−3

5 HSP27 Heat shock protein 27 0.269 ↓ 1.6 2.34 × 10−5

6 FRalpha Folate receptor alpha 0.294 ↓ 1.01 2.71 × 10−4

which can turn out to be extremely challenging.The various findings
do, however, present valuable clues into the underlying molecular
mechanisms and as to which biological processes are affected in
ASD. In the present study, we have isolated and characterized plasma
EVs in ASD and control individuals. We performed an extensive
proteomics profiling, screening over 1,196 proteins, of which five
are significantly downregulated in ASD EVs. To our knowledge,

this study is the first and unique to investigate the EV protein
cargo in ASD.

Due to the limited accessibility to the brain and cerebrospinal
fluid (CSF) for biomarker discovery, blood is ideal for liquid
biopsy, given its easier accessibility and non-invasive collection
(Marrugo-Ramirez et al., 2018). EVs are very attractive diagnostic
and therapeutic tools, particularly for brain disorders, because
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FIGURE 3
Machine learning outcome. (A) A Venn diagram of the overlapping proteins selected by MUVR, VSURF, and Boruta methods. (B) An ROC curve of the
true positive rate versus the false positive rate for different threshold values of the classifier. (C) A table summarizing the performance metrics of the
best classifier, which is the random forest using the intersect of the features selected by MUVR, Boruta and VSURF.

of their property to cross the BBB (Alvarez-Erviti et al., 2011;
Saeedi et al., 2019; Chen et al., 2016). Thus, plasma EVs provide
a potential therapeutic approach to neurological disorders. Brain-
derived EVs might provide biomarkers for neuronal disorders,
and EVs can be used in therapeutics as a drug delivery system
to the brain (Yoo et al., 2018; Mustapic et al., 2017). EV
proteins and RNA are considered promising biomarkers for
neurodegenerative disease and neurodevelopmental disorders
(Saeedi et al., 2019; Guix et al., 2018; Pulliam et al., 2019). Our
data support that five EV proteins can pave the way for early
diagnosis of ASD as novel biomarkers and have the potential to
enhance diagnostic accuracy and facilitate earlier intervention
strategies.

We applied stringent criteria to sensitively detect TopDEPs in
ASD EVs, which could serve as potential biomarkers for ASD,
using thresholds of FC ≥ 2 and an adjusted p-value ≤ 0.05. One
of the major challenges in biomarker discovery is that many
proteins lack specificity and selectivity, often resulting in large
numbers of differentially expressed proteins, both upregulated
and downregulated, in disease conditions. However, an abundance
of candidate proteins does not necessarily facilitate biomarker
identification.Notably, our study reveals that only five EV-associated
proteins out of 1,196 proteins are selectively downregulated in ASD
EVs, with no upregulated proteins detected. To ensure accurate
protein quantification, we normalized NPX data to account for
differences in EV particle numbers across samples by incorporating
EV particle numbers as a covariate in the linear model for statistical
analysis. Consequently, the observed differences in protein levels in
our study reflect biological differences and variation in ASD rather
than technical artifacts.

Top five significantly downregulated proteins are related to EV
biogenesis, function and signaling: 1)WWP2, an E3 ubiquitin ligase,
regulates EV release by ubiquitination of EV proteins (Nabhan et al.,
2012); 2) HSP27 is a heat shock protein, which is elevated in the
blood in various diseases (Reddy et al., 2018) and extracellular
HSP27 may have functions in pathological conditions (De Maio
and Vazquez, 2013). HSP27 is present in EVs released from THP-
1 cells (Shi et al., 2019) and can be transferred to recipient cells
via EVs (Reddy et al., 2018); 3) CLEC1B is a receptor involved
in transmembrane signaling (Huysamen and Brown, 2009) and
is highly expressed in neuron-derived exosomes (Pulliam et al.,

2019); 4) CD40 is a protein present in plasma EVs from non-
Hodgkin lymphoma patients (Martinez et al., 2022) and tumor-
derived EVs (Hagerbrand et al., 2022), suggesting its potential as a
cancer biomarker; 5) FRalpha is present in EVs and involved in folate
transport into the brain throughEVs (Grapp et al., 2013). Altogether,
our data support that these five proteins may serve as useful EV
biomarkers for ASD diagnosis.

Among the proteins we show to be downregulated in
ASD individuals is HSP27 which is thought to have major
protective effects against many cellular stresses (Latchman,
2005). This was in accordance with a previously published
study evaluating protein levels in the blood of ASD children
and found HSP27 to be decreased (Tsukurova, 2018).
Over-expression of HSP27 has been shown to protect and
rescue neuronal and non-neuronal cells from cell damage
and death (Latchman, 2005; Dave et al., 2023). HSP27 is
a biomarker candidate for neurodegenerative diseases like
Alzheimer’s disease, because HSP27 is neuroprotective by
protecting neurons from protein misfolding and oxidative
stress (Wilhelmus et al., 2006). CD40 is important in
neuroinflammation and is a potential biomarker for Alzheimer’s
disease (Kim et al., 2023). FRalpha is involved in folate
transport, and disruptions in folate metabolism have been linked
to autism (Ramaekers et al., 2007).

While we have included key covariates that directly impact
EV quantification, such as EV particle numbers, additional factors
that might act as confounders—such as age, gender, or disease
severity—were not explicitly considered in the current analysis.
These confounding factors could potentially affect the relationship
between protein levels and disease condition. To further refine our
analysis and minimize the influence of these confounders, future
studies could incorporate additional covariates based on clinical and
demographic data.

The percentage of brain-derived EVs in plasma is typically
low, given that most EVs circulating in the bloodstream originate
from immune cells (Yanez-Mo et al., 2015; Thery et al., 2018).
Noteworthy is the connection of the five TopDEPs identified in ASD
EVs with immune responses and cytokine production (Figure 2E).
This suggests that ASD EVs may play a role in modulating
chronic inflammation. While chronic inflammation and immune
dysregulation have been proposed as potential contributors to the
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characteristic features of autism (Arteaga-Henriquez et al., 2023),
the mechanisms by which ASD EVs regulate chronic inflammation
remain to be elucidated in further studies.
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