Skip to main content

ORIGINAL RESEARCH article

Front. Mar. Sci.
Sec. Marine Ecosystem Ecology
Volume 11 - 2024 | doi: 10.3389/fmars.2024.1473471
This article is part of the Research Topic Antarctic Krill and Interactions in the East Antarctic Ecosystem View all 12 articles

Ship-based RPA operations for cetacean research in Antarctica: progress, opportunities and challenges

Provisionally accepted
Virginia Andrews-Goff Virginia Andrews-Goff 1*Joshua N. Smith Joshua N. Smith 1Lyn G. Irvine Lyn G. Irvine 2,3Michael C. Double Michael C. Double 1
  • 1 Australian Antarctic Division, Hobart, Australia
  • 2 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
  • 3 Irvine Marine Fauna Research, Perth, Australia

The final, formatted version of the article will be published soon.

    Data collection facilitated by remotely piloted aircraft (RPA) has proven to be revolutionary in many disciplines including for research in extreme environments. Here we assess current use and utility of small multirotor remotely piloted aircraft (RPAs) for the challenging role of facilitating ship-based cetacean research in Antarctica. While such aircraft are now used routinely in sheltered environments in and off Antarctica, a comprehensive literature review found that RPA-mediated cetacean research conducted from ships at sea and outside of the Antarctic Peninsula region was relatively uncommon. In order to determine the potential utility of ship-based multirotor RPA operations for cetacean research, we repeatedly deployed small RPAs during a multidisciplinary research voyage in maritime East Antarctica to collect scientific data contributing to an understanding of krill and krill predator interactions. RPA flight metrics (duration, height, length, speed, distance from ship, battery drainage, satellites acquired) were compared to ship underway environmental sampling data. At a mean duration of 12 minutes, these 139 RPA flights were relatively short yet adequate to achieve the science intended, namely a range of cetacean related data streams including photogrammetry, photo identification, behavioural observations and whale blow sampling in addition to water sampling and collection of general scenic imagery. RPA flight operations were constrained by wind speed but not by air temperature with flights undertaken throughout the full range of air temperatures experienced (down to –9.5 °C) but not throughout the full range of wind speeds experienced. For a 12-minute flight duration, battery drainage was around 60% indicating that the RPAs were rarely pushed to their operational limit. There was little evidence that the cold impacted RPA lithium battery performance with estimated maximum flight time within approximately 10% of expected flight time for the RPA platforms most used. Whist small multirotor RPAs are rarely applied to cetacean related research in maritime East Antarctica, we demonstrate their value and potential to deliver data critical to address knowledge gaps that challenge the effective management of both krill and their predators.

    Keywords: Drone, whale, Antarctic blue whale, Southern Ocean, Multirotor

    Received: 31 Jul 2024; Accepted: 04 Sep 2024.

    Copyright: © 2024 Andrews-Goff, Smith, Irvine and Double. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Virginia Andrews-Goff, Australian Antarctic Division, Hobart, Australia

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.