Skip to main content

PERSPECTIVE article

Front. Immunol.
Sec. Autoimmune and Autoinflammatory Disorders : Autoimmune Disorders
Volume 16 - 2025 | doi: 10.3389/fimmu.2025.1479814
This article is part of the Research Topic Risk and Protective Factors in the Natural History of Autoimmunity View all 6 articles

The Toll Like Receptor 7 Pathway and the Sex Bias of Systemic Lupus Erythematosus

Provisionally accepted
  • Oklahoma Medical Research Foundation, Oklahoma City, United States

The final, formatted version of the article will be published soon.

    Systemic lupus erythematosus (SLE) predominately affects women with a ratio of females-tomales of about 9:1. The complement of sex chromosomes may play and important role in the mechanism of the sex bias. Previous work has shown that men with Klinefleter's syndrome (47,XXY) as well as women with 47,XXX are found in excess among SLE patients well as among Sjogren's disease, systemic sclerosis and idiopathic inflammatory myositis. in cells with more than one X chromosome, all but one is inactivated. However, X chromosome inactivation, as mediated by the long noncoding RNA X-inactive specific transcript, or XIST, is not complete with approximately 10% of genes in the non-recombining region of the X chromosome escaping X inactivation. In the TLR7 signaling pathway, both the TLR7 and TLR adaptor interacting with endolysosomal SLC15A4 (TASL) escape X inactivation. Comparing male and female immune cells, there is increased TLR7 signaling related to increased expression of these genes in cells with more than one X chromosome. Cells with more than one X chromosome also express XIST, while cells with one X chromosome do not. XIST, as a source of ligand for TLR7, has also been shown to increase TLR7 signaling. Thus, we propose that both these mechanisms operating in immune cells with more than one X chromosome may act in a mutual way to mediate an X chromosome dose effect for the sex bias of autoimmune disease.

    Keywords: systemic lupus erythematosus, sex bias, TLR7, TASL, XIST

    Received: 12 Aug 2024; Accepted: 30 Jan 2025.

    Copyright: © 2025 Scofield, Wren and Lewis. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Robert Hal Scofield, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Valerie Lewis, Oklahoma Medical Research Foundation, Oklahoma City, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.