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Systemic lupus erythematosus (SLE) predominately affects women with a ratio of

females-to-males of about 9:1. The complement of sex chromosomesmay play and

important role in the mechanism of the sex bias. Previous work has shown that men

with Klinefleter’s syndrome (47,XXY) as well as women with 47,XXX are found in

excess among SLE patients well as among Sjogren’s disease, systemic sclerosis and

idiopathic inflammatory myositis. in cells with more than one X chromosome, all but

one is inactivated. However, X chromosome inactivation, as mediated by the long

noncoding RNA X-inactive specific transcript, or XIST, is not complete with

approximately 10% of genes in the non-recombining region of the X

chromosome escaping X inactivation. In the TLR7 signaling pathway, both the

TLR7 and TLR adaptor interacting with endolysosomal SLC15A4 (TASL) escape X

inactivation. Comparing male and female immune cells, there is increased TLR7

signaling related to increased expression of these genes in cells with more than one

X chromosome. Cells with more than one X chromosome also express XIST, while

cells with one X chromosome do not. XIST, as a source of ligand for TLR7, has also

been shown to increase TLR7 signaling. Thus, we propose that both these

mechanisms operating in immune cells with more than one X chromosome may

act in a mutual way to mediate an X chromosome dose effect for the sex bias of

autoimmune disease.
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Sex bias in lupus

Systemic illness among patients with the rash of lupus erythematosus was first noted by

Moriz Kaposi in Vienna during the late 19th century (1). During the remainder of the 19th

century and through the middle of the 20th century, the entity of systemic lupus erythematosus

was established (2). The bias of this disease to affect women was also noted during this period,

with assembled cohorts comprised by ~90% of women (3). This ratio of ~9:1 women to men in
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cohorts of SLE has continued to be true into the 21st century with

modern epidemiological methods (4). This relationship holds true in all

racial and ethnic groups studied.
Sex hormones in lupus

While there are sex hormone differences between SLE patients

and matched controls, be they men or women (reviewed in (5)), a

fundamental biological explanation for these findings and their

relationship to the gender-bias of SLE has not been forthcoming (6).

Clearly, some men with SLE have primary hypogonadism. For

instance, Mok, et al, found that 5 of 35 men with SLE had low serum

testosterone and high luteinizing hormone (LH) while none of 33

control men did (7). The etiology of the hypogonadism in these

men was not determined. Higher serum prolactin is also found in

both men and women with SLE compared to controls (8, 9).

However, men with SLE have the same degree of hypogonadism

and low testosterone as do men with other non-female biased

chronic illnesses (10), suggesting chronic illness causes

hypogonadism in SLE rather than vice versa. Furthermore, at the

onset of disease, prior to treatment, there are no sex hormone

differences between SLE patients and a matched control

population (11).
X chromosome in lupus

Seeking another explanation to the sex bias of SLE, we examined

the complement of sex chromosomes, initially among men with

SLE. We found that these SLE-affected men were much more likely

than matched control men to have Klinefelter’s syndrome, that is,

47,XXY (12). Subsequent work found that 47,XXX was found in

excess among women with SLE (13). We have also found the rare

mosaic, 45XO/46XX/47XXX, is associated with SLE (14), while

Turner’s syndrome (female 45,XO) was not found in excess among

SLE patients (15). We have now extended these findings to other

female-biased autoimmune diseases (16, 17), and others have

replicated the findings in SLE (18, 19). Thus, this work

established that the number of X chromosomes was a risk factor

for SLE, and that the number of X chromosomes might underly the

female predominance of the disease.

Discussing the potential mechanisms by which an X

chromosome dose effect might operate requires a brief review of

the biology of the sex chromosomes, which are in mammals, of

course, are the X and Y. The X and Y chromosomes pair in meiosis

and mitosis by virtue of short regions at the distal ends of both

chromosomes known as the pseudoautosomal regions (PAR);

namely PAR1 and PAR2. Each PAR contains a handful of genes,

which behave identically to autosomal genes. That is, there is

expression of one copy on X and one copy on Y with genetic

crossover occurring within PAR1 and PAR2 of the X and Y

chromosomes. Meanwhile, on the X chromosome, centromeric to

the two PARs are about 2000 genes that are X-linked. Similarly, on

the Y chromosome centromeric to the two PARs are about 40 genes

in the non-recombining region of Y. Almost all these Y genes are
Frontiers in Immunology 02
expressed in male gonadal tissue and function in spermatogenesis.

In contrast, X-linked genes, like other chromosomes, are not

functionally organized; and, generally do not have a Y homologue

(although there are exceptions).

In cells with 2 or more X chromosomes, all but one is

inactivated by methylation through the action of the X inactive-

specific transcript (Xist) gene (Figure 1), which encodes a long non-

coding RNA (20). That is, since women have two X-chromosomes

and men have one, the imbalance in X chromosome gene

expression is equalized by each cell with 2 or more X

chromosomes randomly undergoing inactivation (which is

mediated by methylation of CpG) of all but one X chromosome.

However, despite the fact that the inactive X chromosome makes up

the cytoplasmic Barr body, X inactivation is not an all-or-none

phenomenon. On the inactivated X chromosome (Xi), about 15% of

the genes escape methylation partially or completely giving women

(and Klinefelter men) more phenotypic variability compared to

normal (i.e., 46XY) men (21).

Continued presence of Xist transcripts were not thought to be

needed for maintenance of X inactivation (22). However, recent

data demonstrate that this may not be the case in immune cells. Yu

and colleague showed that deletion of Xist in CD11c-positive

atypical memory B lymphocytes along with TLR7 activation

induced isotype switching. In addition, Xist down regulation was

found among B cells from women with SLE (23). Also, Anguera has

found different localization patterns of the Xist non-coding RNA in

B cells with upregulation of 20 X chromosome genes in female cells

(24, 25). In a published preprint, conditional knock of Xist in female

mice (BALB/c and C57BL/6) produced a spontaneous lupus

phenotype (26). Thus, there may be differences in the physiology

of this long non-coding RNA in B cells that change X chromosome

inactivation in such a way that predisposes to a SLE.
X chromosome and immune genes

The idea that immune genes are enriched on the X chromosome

is frequently evoked. However, we find this is not the case. All

human genes and Gene Ontology (GO) categories were

downloaded from NCBI’s FTP server (ftp.ncbi.nlm.nih.gov/Gene/

DATA/) on August 6th, 2024. Only protein-coding and RNA-

producing (eg, ncRNA) transcripts with at least one GO category

annotation were selected for analysis. GO categories associated with

all transcripts on each human chromosome were then identified,

summed, and hypergeometric tests performed to determine relative

chromosomal enrichments or depletions in each GO category. False

Discovery Rate (FDR) corrections for the most significant p-value

(enriched or depleted) were performed to correct for multiple

testing. As a positive control, we find the Y chromosome highly

enriched (p-value = 0) in the GO categories “spermatogenesis” and

“gonadal mesoderm development”. We find that, although there are

many immune-related genes on the X chromosome, it is not

particularly enriched for immune-related genes more than any

other chromosome. This was true for all genes related to immune

function with 50 of 1,482 (3.4%) on the X chromosome.

Furthermore, no individual category of immune function had
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enrichment on the X chromosome (Table 1). In fact, we found

significant immune-related transcript enrichment on other

chromosomes, particularly chromosome 9 (Table 2), and we

found other GO categories enriched on the X chromosome
Frontiers in Immunology 03
(Supplementary Table S1). Some of the categories in

Supplementary Table S1 might impact immune processes (eg,

miRNA-mediated gene s i lenc ing) , but none are not

immune-specific.
FIGURE 1

X chromosome inactivation and escaping X inactivation. The process of XCI occurs in mammalian cells that have two or more X chromosomes. In early
stages of embryonic development, the maternal or paternal X chromosome is randomly silenced. This X-inactivation is initiated by long non-coding RNA,
XIST, and subsequent DNA methylation and histone modifications. The incomplete inactivation of the X chromosome (pseudoautosomal region and variable
genes throughout the X chromosome) results in approximately 15% of X-linked genes remaining transcriptionally active. These "escapee" genes contribute to
differential expression of X-linked genes between men and women. Xi-inactive; Xa-active.This image was created in Biorender.com.
TABLE 1 Immune related gene categories for the X chromosome.

GO group name/ID on X/total OR FDR p value

innate immune response/0045087 14/485 0.81 0.6494

immune response/0006955 8/310 0.72 0.6494

adaptive immune response/0002250 4/193 0.58 0.6494

AHIRMAP/0061844 2/99 0.56 0.6494

activation of innate immune response/0002218 2/32 1.82 0.6494

positive regulation of innate immune response/0045089 2/30 1.95 0.6494

positive regulation of Ig production/0002639 2/28 2.10 0.6494

immunoglobulin mediated immune response/0016064 2/24 2.48 0.6494

immunological synapse formation/0001771 1/13 2.28 0.6494

negative regulation of immune response/0050777 1/12 2.48 0.6494

negative regulation of Ig production/0002638 1/8 3.90 0.6494

positive regulation of adaptive immune response/0002821 1/8 3.90 0.6494

regulation of immunoglobulin production/0002637 1/7 4.56 0.6494

T cell mediated immunity/0002456 1/16 1.82 0.6497

regulation of innate immune response/0045088 1/21 1.37 0.6521

regulation of immune system process/0002682 1/39 0.72 0.6585

innate immune response in mucosa/0002227 1/27 1.05 0.6617

regulation of immune response/0050776 1/27 1.05 0.6617

immune response-regulating signaling pathway/0002764 1/37 0.76 0.6625

humoral immune response/0006959 2/60 0.94 0.6642

positive regulation of immune response/0050778 1/36 0.78 0.6656
AHIRMAP, antimicrobial humoral immune response mediated by antimicrobial peptide.
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Candidate X genes in lupus

X chromosome genes that escape X inactivation; and, thus have

expression of the gene from each of X chromosome, are candidates

to mediate the X chromosome dose effect. Our attention was drawn

to two genes in the toll like receptor 7 (TLR7) pathway that

routinely escape X inactivation; namely, TLR7 itself and TASL

(TLR Adaptor Interacting With Endolysosomal SLC15A4). The

TLR7 pathway is critical for the pathogenesis of SLE, both in murine

models and humans. For instance, rare gain-of-function TLR7

mutations can cause monogenic pediatric SLE (27–29) and mice

with TLR7 over-expression due to a translocation between the X

and Y chromosome develop a lupus-like illness (30, 31). The TLR7

protein is localized to the endosome and is critical for recognition of

viruses and subsequent activation of the innate immune system.

TLR7 binds single-stranded RNA or metabolites thereof, which

activates the pathway, leading to production of interferon as well as

other cytokines (32). Furthermore, common population variants of

genes encoding protein that function in the TLR7 pathway show

genetic association to the SLE phenotype. These include TLR7,

TASL, SLC15a4 (a binding partner of TASL (33)), and UNC93B1, a

regulator of TLR7 movement into the endosome (34–37). Many

functional studies also implicate the TLR7 pathway in SLE

pathogenesis in both human and murine lupus models (30, 31,

38–43).

Given the critical nature of the TLR7 pathway in SLE and the

association of X chromosome number with the sex bias of the

disease, we elected to study the role of TASL in the TLR7 pathway.

As described above, the TASL gene routinely escapes X inactivation

and TASL is expressed in several immune cells, including B

lymphocytes and monocytes, contains an SLE risk allele (19, 35)
Frontiers in Immunology 04
and binds SLC15A4 on the lysosomal surface (44). SLC15a4

regulates lysosomal pH, to which TLR7 signaling is highly

sensitive (45, 46). In addition, knockout of the gene is known to

abrogate TLR7 signaling (47).

Given these data, we undertook studies to examine the role of

TASL in the TLR7 pathway (48). In particular, since TASL and

SLC15a4 are binding partners and SLC15a4, at least in part,

determines lysosomal pH, we studied lysosomal pH. First, we

examined expression of the TASL protein in human primary

monocytes, B cells and lymphoblastoid cells lines. In each case,

TASL was expressed more highly in female cells compared to male

cells (49). Additional studies from Odham et al, also found TASL

was more highly expressed in female cells and this sexual

dimorphism was magnified when stimulated with type I

interferons (50). Using a ratiometric measurement of lysosomal

pH via fluorescence in unstimulated female monocytes, we found

lysosomal pH averaged 4.9 versus 5.6 in male cells (p=0.0001) (48).

A similar difference in lysosomal pH was also found between male

and female B cells and dendritic cells, while we did not find a female:

male dichotomy for lysosomal pH in NK or T cells, neither of which

express TASL (48). Thus, the sex difference in lysosomal pH is likely

to be associated with increased TLR7 signaling, and may be

dependent upon increased expression of TASL in female cells.

In order to determine if, in fact, TASL participates in lysosomal

pH regulation and TLR7 signaling, we undertook a series of

knockdown experiments using CRISPR-Cas9 and primary human

monocytes (CD14+/CD16−). In female cells treated with a TLR7

agonist, TASL knockdown abrogated interferon-alpha, IL-6 and

TNF production (49). Thus, TASL is critical for TLR7 pathway

signaling. Furthermore, knockdown of TASL expression resulted in

a rise in lysosomal pH in female monocytes to the pH we found in
TABLE 2 Gene ontology categories that are significantly found increased on a given chromosome.

chromosome GO category/ID #/total OR FDR p value

9 0002286 TCA 17/24 57.99 0

9 0002323 NKCA 17/19 202.96 0

19 0002764 IRRSP 35/37 258.04 0

9 0006959 HIR 18/60 10.23 1.40E-08

6 0050778 PRIR 16/36 13.54 2.15E-08

19 0002682 RISP 15/39 9.21 4.00E-06

20 0045087 IIR 36/485 2.83 6.69E-05

9 0002250 AIR 25/193 3.56 0.0001

6 0002250 AIR 30/193 3.12 0.0001

4 0061844 AHIRMAP 14/99 4.15 0.006

8 0002227 IIRM 7/27 9.37 0.009

17 0045087 IIR 12/485 0.37 0.010

17 0061844 AHIRMAP 17/99 2.99 0.036

12 0061760 AIIR 6/18 8.62 0.045
TCA, T cell activation involved in immune response; NKCA, natural killer cell activation involved in immune response; IRRSP, immune response-regulating signaling pathway; HIR, humoral
immune response; PRIR, positive regulation of immune response; RISP, regulation of immune system process; IIR, innate immune response; AIR, adaptive immune response; AHIRMAP,
antimicrobial humoral immune response mediated by antimicrobial peptide; IIRM, innate immune response in mucosa; AIIR, antifungal innate immune response.
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male monocytes. And, intracellular transport of NOD1 antigens, a

function of SLC15a4, was also abrogated by TASL knockdown (49).

However, it should be noted that these results have not been

independently replicated; and, thus, are not confirmed.

Several other lines of evidence support a sex-biased function of

the TRL7 pathway (51–53). Our studies in primary monocytes and

LCLs suggest TASL is involved in the TLR7 in a sexually dimorphic

manner such that lysosomal pH is lower and TLR7 signaling greater

in female versus male cells. As of late, studies on TASL have shown

that the once uncharacterized protein functions as enzyme that

regulates interferon regulatory factor 5 (IRF5), colocalizes with

TLR7 and is interferon inducible. TASL ability to increase

interferon production (our work and others) and its own protein

level to be subsequently amplified by interferon stimulations

suggest a positive feedforward response that would result in

increased production that is often found in SLE affected subjects.

Thus, increased expression of both TLR7 (54) and TASL (48, 49)

may underlie not only improved outcome of women compared to
Frontiers in Immunology 05
men in some infections (55) but also female disposition to

autoimmunity mediated via TLR7 (56).
XIST in lupus

Other investigators have taken a different tack in studying the

role of the X chromosome in the sex bias of SLE (57, 58); however,

the data generated also concern the TLR7 pathway. As mentioned

above, XIST long non-coding RNA mediates X chromosome

inactivation (Figure 1); and, thus, is expressed only in cells with

more than one X chromosome. Dou and colleagues preformed a

series of experiments that indicate XIST is a source of ligand for

TLR7; and, of course, this is a sex specific source of ligand (57, 58).

First, these investigators noted that XIST is rich in potential TLR7

ligands. A putative TLR7 stimulatory motif, the UU dinucleotide, was

found 2,140 times in XIST RNA. XIST was the sex-biased transcript

with the highest degree of UU dinucleotide gene expression; and,
FIGURE 2

Schematic depicting the proposed interaction of XIST, TLR7, and TASL in response to self-antigen. XIST provides ligand for TLR7. Once TLR7
signaling is activated, there is a feed forward stimulation of the pathway. The genes for both TLR7 and TASL are on the X chromosome and escape X
inactivation. Thus, some data suggest that TRL7 signaling is more robust in female cells, compared to male cells, on this basis. Created with
Biorender.com.
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further, was the only sex-biased expression source of the extended

TLR7 motif 5′-GUCCUUCAA-3′ (57, 58). Overall, XIST was the

strongest sex biased source of self TLR7 ligand.

Next, these investigators turned to stimulation of TLR7 by XIST

nucleotides using HEK-hTLR7 cells as a reporter. The extended

TLR7 motif found in XIST as well as a longer sequence of XIST

(containing the A-repeat, UU dinucleotide rich region) were also

found to stimulate TLR7 signaling as indicated by production of

interferon-alpha. Further, not only was the response due to specific

binding of XIST nucleotide and dose-dependent, the TLR7 response

was inhibited by depletion of XIST as well by hydroxychloroquine

(57). Additional studies found that XIST levels were higher in

peripheral leukocytes among women with SLE compared to non-

SLE affected matched controls, and that levels of XIST correlated

with disease activity. The investigators concluded, and we certainly

agree, that the XIST long non-coding RNA is the most potent

source of sex biased TLR7 ligands in female cells.
XIST, TLR7, TASL in lupus and other
autoimmune diseases – an hypothesis

We further conclude that these two sets of data suggest synergism

for a female biased expansion of the TLR7 signaling pathway that could

underlie the X chromosome dose effect found in various autoimmune

diseases, including SLE (12–15), Sjögren’s disease (13, 16),

polymyositis/dermatomyositis (17), and systemic sclerosis (17). The

idea, we think, is straight forward. XIST RNA supplies TLR7 ligand in

female cells. In addition, female B lymphocytes, dendritic cells, and

monocytes have enhanced TLR7 pathway signaling by virtue of the

over-expression (compared to male cells) of not only TLR7 but also

TASL. Enhanced TLR7 signaling activity deploys a feed forward loop in

the TLR7 pathway that leads to increased expression and activity of the

pathway (59). Thus, both increased ligand and enhanced activity

support further enhancement of TLR7 signaling in female cells. Of

course, these phenomena are universal in cells with more than one X

chromosome; that is, from women or Klinefelter men. So, other factors

must be in play such as other genetics or environmental exposure.
TLR7 signaling and environmental
triggers in lupus

What environmental exposure might interact with this sex-biased

enhancement of TLR7 signaling induced by Xist and genes in the TLR7

pathway that escape X inactivation? One candidate is Epstein Barr virus

(EBV). Epidemiological evidence supports the idea that this near

ubiquitous infection is necessary but not sufficient for the expression

of SLE as well as multiple sclerosis, and there some evidence in Sjögren’s

disease (60–65). Recent studies have found that single nucleotide

polymorphisms demonstrating genetic association with SLE or

Sjögren’s disease are more likely to be found in promoter regions

bound by the EBV transcription factor EBV nuclear antigen 2 (EBNA2)

(66, 67). Overall, the preponderance of evidence indicates that EBV

infection is likely one of the environmental triggers for disease.
Frontiers in Immunology 06
Furthermore, EBV infects B lymphocytes, a cell type with expression

of TASL, engaging and increasing expression of TLR7 (68). B cell

hyperplasia is one of the hallmarks of systemic autoimmune disease

(69). Thus, these data concerning enhanced expressed XIST, TLR7 and

TASL in female cells impacting TLR7 signaling may interact with data

concerning a role of EBV in promoting SLE and other autoimmune

diseases (62, 63, 70). Of course, estrogen and differential expression of

estrogen-regulated genes remain a potential biological trigger of the

disease. The sex bias of SLE is present in prepubescent children at about

5 to 1, but of course is less pronounced than after puberty (71). These

data suggest an effect of estrogen. Further, there are clear effects of

estrogen on B lymphocytes and humeral immunity (72, 73) with effects

on development, immune tolerance, immunoglobulin somatic

hypermutation, and class switching. In addition, some estrogen effects

in B cells may be mediated through cell surface (as opposed to nuclear)

estrogen receptors (74).
Summary

The evidence is strong that the number of X chromosomes is

important for the female bias of some, but not all, autoimmune diseases.

The mechanism by which a dose effect for the X chromosome is not

understood. Available evidence suggests that multiple factors may play

roles that are complementary. These include expression of XIST, which

provides TRL7 ligand, and escape of X inactivation by genes whose

protein products are critical for TLR7 signaling (see Figure 2).
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