Skip to main content

ORIGINAL RESEARCH article

Front. Hum. Neurosci.

Sec. Brain-Computer Interfaces

Volume 19 - 2025 | doi: 10.3389/fnhum.2025.1517273

A Spatial and Temporal Transformer-based EEG Emotion Recognition in VR Environment

Provisionally accepted
  • 1 Beihang University, Beijing, China
  • 2 Beijing Normal University, Beijing, Beijing Municipality, China

The final, formatted version of the article will be published soon.

    With the rapid development of deep learning, Electroencephalograph(EEG) emotion recognition has played a significant role in affective brain-computer interfaces. Many advanced emotion recognition models have achieved excellent results. However, current research is mostly conducted in laboratory settings for emotion induction, which lacks sufficient ecological validity and differs significantly from real-world scenarios. Moreover, emotion recognition models are typically trained and tested on datasets collected in laboratory environments, with little validation of their effectiveness in real-world situations. VR, providing a highly immersive and realistic experience, is an ideal tool for emotional research. In this paper, we collect EEG data from participants while they watched VR videos. We propose a purely Transformer-based method, EmoSTT. We use two separate Transformer modules to comprehensively model the temporal and spatial information of EEG signals. We validate the effectiveness of EmoSTT on a passive paradigm collected in a laboratory environment and an active paradigm emotion dataset collected in a VR environment.Compared with state-of-the-art methods, our method achieves robust emotion classification performance and can be well transferred between different emotion elicitation paradigms.

    Keywords: electroencephalograph, virtual reality, transformer, emotion recognition, brain-computer interface

    Received: 29 Oct 2024; Accepted: 10 Feb 2025.

    Copyright: © 2025 Li, Yu and Shen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Yang Shen, Beijing Normal University, Beijing, 100875, Beijing Municipality, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more